加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

庞加莱与庞加莱猜想

(2016-11-23 11:07:59)

庞加莱与庞加莱猜想

来自2006.10.24 sky-walker

 

 

 

 

克莱数学研究所征解的七个数学问题 (CMI Seven Millennium Prize Problems)

二十一世纪到来之际,克莱数学研究所(The Clay Mathematics Institute of Cambridge, Massachusetts (CMI))参照一百多年前德国数学家大卫希尔伯特的做法,于2000年5月24日在法国召开的千禧年年会上,公开征解七个数学问题的解答。这七个问题是由克莱数学研究所的科学顾问委员会精心挑选的,克莱数学研究所的董事会为每一个问题的解决提供了一百万美元的奖金。这些问题是(按照问题题目的英文字母顺序排列)[7个问题的说明]

1.     波奇和斯温纳顿-戴雅猜想(Birch and Swinnerton-Dyer Conjecture):对有理数域上的任一椭圆曲线, 其L函数在1的化零阶等于此曲线上有理点构成的Abel群的秩。
2.     霍奇猜想(Hodge Conjecture):在非奇异复射影代数簇上, 任一霍奇类是代数闭链类的有理线性组合。
3.     纳威厄-斯托克斯方程(Navier-Stokes Equations):证明或否定3-维奈维尔-斯托克斯方程解的存在性和光滑性(在合理的边界和初始条件下)。
4.     P与NP问题(P VS NP Problem):有确定性多项式时间算法的问题类P是否等于有非确定性多项式时间算法的问题类NP。
5.     庞加莱猜想(Poincare Conjecture):任意闭单连通3-流型同胚于3-球。
6.     黎曼假设(Riemann Hypothesis):黎曼Zeta-函数的非平凡零点的实部都是1/2。
7.     杨-米尔理论(Yang-Mills Theory):证明量子Yang-Mills场存在并存在一个质量间隙。

 
 
庞加莱猜想


  庞加莱(Poincare)猜想 : 庞加莱在1904年发表的一組论文中提出:任一单连通的、封闭的三維流形与三維球面同胚。

  粗浅的比喻为:如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。


历史

  庞加莱猜想由法国数学家亨利·庞加莱于1904年提出拓扑学难题。百年来无人能解。在庞加莱猜想提出後不久,就被推广到n≧4维的情況,这称为广义庞加莱猜想。1961年,美国数学家S.Smale采用十分巧妙的方法绕过三、四维的困难情況,证明了五维以上的庞加莱猜想。1981年另一位美国数学家M.Freedman证明了四维猜想,至此广义庞加莱猜想得到了证明。但时至今日,庞加莱猜想却依然故我。在2002年,一位俄罗斯的数学家格里戈里·佩雷尔曼(Grigori Perelman)提出的论文证明了此一猜想。

 http://s3/mw690/003uUXaLzy76DCiS8tIc2&690
亨利·庞加莱 
(Jules Henri Poincaré)
法国数学家、天体力学家、数学物理学家、科学哲学家

 
庞加莱生平简介

 

    庞加莱,J. H.(Poincaré, Jules Henri)1854年4月29日生于法国南锡;1912年7月17日卒于巴黎.数学、物理学、天体力学、科学哲学家.

  庞加莱的父亲莱昂(Léon,Poincaré)是一位第一流的生理学家兼医生、南锡医科大学教授,母亲是一位善良、聪明的女性.庞加莱的叔父安托万(Antoine,Poincaré)曾任国家道路桥梁部的检查官.庞加莱的堂弟雷蒙(Raymond,Poincaré)曾于1911年、1922年、1928年几度组阁,出任总理兼外交部长.1913年1月至1920年初,担任法兰西第三共和国第九届总统.

  庞加莱的童年是不幸的,也未表现出什么超人的天才.在幼儿时,他的运动神经共济官能就缺乏协调,写字画画都不好看.5岁时,白喉病把他折磨了9个月,从此就留下了喉头麻痹症.疾病使他长时期身体虚弱,缺乏自信.他无法和小伙伴作剧烈的游戏,只好另找乐趣,这就是读书.在这个广阔的天地里,他的天资通过家庭教育和自我锻炼逐渐显露出来.读书增强了他的空间记忆(视觉记忆)和时间记忆能力.他视力不好,上课看不清老师在黑板上写的东西,只好全凭耳朵听,这反倒增强了他的听觉记忆能力.这种“内在的眼睛”大大有益于他后来的工作,他能够在头脑中完成复杂的数学运算,他能够迅速写出一篇论文而无需大改.

  15岁前后,奇妙的数学紧紧地扣住了庞加莱的心弦,他曾在没有记一页课堂笔记的情况下赢得了一次数学大奖.1873年底,庞加莱进入综合工科学校深造.1875年,他到国立高等矿业学校学习,打算做一名工程师,但一有闲空就钻研数学,并在微分方程一般解的问题上初露锋芒.1878年,他向法国科学院提交了关于这个课题的“异乎寻常”的论文,并于翌年8月1日得到数学博士学位.由于工程师的职业与他的志趣不相投,他又想做一个职业数学家.在得到博士学位后不久(1879年12月1日),他应聘到卡昂大学作数学分析教师.两年后,他提升为巴黎大学教授,讲授力学和实验物理学等课程.除了在欧洲参加学术会议和1904年应邀到美国圣路易斯科学和技艺博览会讲演外,庞加莱一生的其余时间都是在巴黎度过的.

  庞加莱的写作时期开始于1878年,直至他1912年逝世——这正是他创造力的极盛时期.在不长的34年科学生涯中,他发表了将近500篇科学论文和30本科学专著,这些论著囊括了数学、物理学、天文学的许多分支,这还没有把他的科学哲学经典名著和科普作品计算在内.由于他的杰出贡献,他赢得了法国政府所能给予的一切荣誉,也受到英国、俄国、瑞典、匈牙利等国政府的奖赏.早在33岁那年,他就被选为法国科学院院士,1906年当选为院长;1908年,他被选为法兰西学院院士,这是法国科学家所能得到的最高荣誉.

  庞加莱被认为是19世纪最后四分之一和本世纪初期的数学界的领袖人物,是对数学和它的应用具有全面了解、能够雄观全局的最后一位大师.他的研究和贡献涉及数学的各个分支,例如函数论、代数拓扑学、阿贝尔函数和代数几何学、数论、代数学、微分方程、数学基础、非欧几何、渐近级数、概率论等,当代数学不少研究课题都溯源于他的工作.

  1.函数论.如果说18世纪是微分学的世纪,那么19世纪则是函数论的世纪.庞加莱是因发明自守函数而使函数论的世纪大放异彩的,他本人也因此在数学界崭露头角.

  所谓自守函数,就是在某些变换群的变换下保持不变的函数.自守函数是圆函数、双曲函数、椭圆函数以及初等分析中其他函数的推广,它不仅对其他各种应用是重要的,而且在微分方程理论中也扮演着主要的角色.

  自守函数的名称今天已用于包括那些在变换群z′=(az+ b)/(cz+d)或这个群的某些子群作用下的不变函数,其中a,b, c,d可以是实数或复数,而且ad-bc=1.此外,在复平面的任何有限部分上,这个群完全是不连续的.更一般的自守函数则是为研究二阶线性微分方

  1880年以前,F.克莱因(Klein)在自守函数方面作了一些基本的工作,后来他在1881年至1882年与庞加莱合作.庞加莱在受到I.L.富克斯(Fuchs)有关工作的吸引而注意到这件事后,对这个课题已作了先行的工作.他以椭圆函数理论为指导,发明了一类新的自守函数,即他所谓的富克斯函数,这是比椭圆函数更为普遍的一类自守函数.后来,庞加莱把分式变换群扩充到复系数的情况,并考虑了这种群的几种类型,他把这种群叫克莱因群.对这些克莱因群,庞加莱得到了新的自守函数,即在克莱因群变换下不变的函数,庞加莱把它叫做克莱因函数.这些函数有类似于富克斯型函数的性质,但基本域比圆要复杂.此后,庞加莱指出如何借助于克莱因函数表示仅有正则奇点的代数系数的n阶线性方程的积分.这样,整个这类线性微分方程都可以用庞加莱的这些新的超越函数来解了.

  自守函数理论只是庞加莱对于解析函数论的许多贡献之一,他的每项贡献都是拓广的理论的出发点.他在 1883年的一篇短文中首先研究整函数的格与其泰勒展开的系数或者函数的绝对值的增长率之间的关系,它与皮卡(E.Picard)定理结合在一起,通过J.阿达玛(Hadamard)和 E.波莱尔(Borel)的结果,导致了整函数和亚纯函数的庞大理论,这个理论在80年之后仍然尚未研究完.

  自守函数提供了具有某种奇点的解析函数的头一批例子,它们的奇点构成非稠密的完备集或奇点的曲线.庞加莱给出另外一个一般方法构成这种类似的函数,即通过有理函数的级数,这导致后来被波莱尔和A.当儒瓦(Denjoy)所提出的单演函数理论.代数曲线的参考化定理也是自守函数论的一个结果,它促使庞加莱在1883年导出一般的“单值化定理”,这等价于存在由任意连通、非紧致黎曼面到复平面或开圆盘的共形映射.

  尤其是,庞加莱是多复变解析函数的创始人,这理论在他之前实际并不存在.他得到的第一个结果是这样的定理:两个复变量的亚纯函数F是两个整函数的商.在1898年,他针对“多重调和函数”对于任意多复变函数进行了深入的研究,并在阿贝尔函数论中加以应用.他还在1907年指出了全新的问题,导出两个复变函数的“共形映射”概念的推广,这就是现在众所周知的、给人以深刻印象的解析流形的萌芽.庞加莱也对多复变函数的重积分的“残数”概念给出满意的推广,这是在其他数学家早期对这个问题作了多次尝试而揭示出严重困难之后进行的.多年后,他的思想在J.勒雷(Leray)的工作中产生了完满的结果.

  2.代数拓扑学(组合拓扑学).庞加莱最先系统而普遍地探讨了几何学图形的组合理论,人们公认他是代数拓扑学的奠基人.可以毫不夸张地说,庞加莱在这个课题上的贡献比在其他任何数学分支上的贡献都更为使他永垂不朽.

  庞加莱先在1892年和1893年的科学院《通报》(Comptes Re-ndus)中发表了一些短文,然后于1895年发表了一篇基本性的论文,接着是一直到1904年在几种期刊上发表的五篇长的补充,这都是论述近代代数拓扑学的方法的.庞加莱认为,他在代数拓扑学方面的工作与其说是拓扑不变性的一种研究,不如说是研究n维几何的一种系统方法.我们现在称之为单形的同调论的一整套方法完全是庞加莱的发明创造:其中有流形的三角剖分、单纯复合形、重心重分、对偶复合形、复合形的关联系数矩阵等概念以及从该矩阵计算贝蒂(E.Betti)数的方法.籍助这些方法,庞加莱发现欧拉多面体定理的推广(现在称之为欧拉-庞加莱公式)以及关于流形的同调的著名的对偶定理;稍后他引进了挠率的概念.在这些论文中,他还定义了基本群(第一个同伦群)并证明它与一维贝蒂数的关系,给出两个流形具有相同的同调但具有不同的基本群的例子,他还把贝蒂数和微分形式的积分联系在一起,叙述了G.德拉姆(de Rham)直到1931年才证明了的定理.有人这样正确地说过:直到1933年发现高阶同伦群之前,代数拓扑学的发展完全基于庞加莱的思想和方法.

  此外,庞加莱还指出如何把这些新工具用于那些促使发现它们的问题.在两篇论文中,他定出了复代数曲面的贝蒂数,以及形如Z2=F(x,y)(F是多项式)的方程定义的曲面的基本群,从而为后来S.莱夫谢茨(Lefschetz)和W.V.D.霍奇(Hodge)的推广铺平了道路.

  3.阿贝尔函数和代数几何学.当庞加莱一接触到G.F.B.黎曼(Riemann)和K.魏尔斯特拉斯(Weierstrass)关于阿贝尔函数和代数几何学的工作之后,他立即对这个领域发生了浓厚的兴趣.他在这个课题上论文的篇幅在他的全集里和自守函数的论文篇幅差不多,时间是从1881年到1911年.这些文章的主要思想之一是关于阿贝尔函数的“约化”.庞加莱把J.雅可比、魏尔斯特拉斯和皮卡研究过的特殊情形加以推广,证明了一般的“完全可约性定理”.并注意到对应于可约的簇的阿贝尔函数,这是推广某些已有结果和研究某些函数特殊性质的出发点.

  庞加莱在代数几何学方面的最突出贡献是他在1910年至1911年间关于代数曲面F(x,y,z)=0中所包含的代数曲线的几篇论文.他所运用的卓有成效的方法使他证明了皮卡和F.塞韦里(Severi)的深刻结果,并首次正确地证明了由G.卡斯特尔诺沃(Castelnuovo)、F.恩里格斯(Enriques)所陈述的著名定理.在其他问题上,他的方法也极有价值,看来它的有效性还远远没有穷尽.

  4.数论.在这个领域,庞加莱首次给出整系数型的亏格的一般定义.他的最后一篇数论论文(1901年)最有影响,是我们现在所谓的“有理数域上的代数几何学”的头一篇论文.这篇论文的主题是个丢番图(Diophantus)问题,即求一条曲线f(x,y)=0上具有有理数坐标的点,其中f的系数是有理数.庞加莱定义了曲线的“秩数”,并猜想秩数是有限的.这个基本事实由L.J.莫德尔(Mardell)在1922年予以证明,并由A.韦伊(Weil)推广到任意亏格的曲线(1929年).他们用的是“无限下降法”,这基于椭圆(或阿贝尔)函数的半分性质;庞加莱在他的文章中发展了一种与椭圆函数的三分性质有关的类似的计算,这些思想似乎是莫德尔证明的出发点.莫德尔-韦依定理在丢番图方程论中已成为基本的定理,但是与庞加莱引入“秩数”概念的许多问题仍然尚未得到解答,更深入地钻研他的论文也许会导出新的结果.

  5.代数学.庞加莱从未出于代数学本身的需要而去研究代数学,只是当在算术或分析问题中需要代数结果时才去研究它.例如,他关于型的算术理论的工作使他研究次数≥3的型,其上作用着连续自同构群.与此有关,他注意到超复系和由超复系的可逆元素乘法定义的连续群之间的关系;他在1884年就这个问题所发表的短文后来引起E.施图迪(Study)和E.嘉当(Cartan)关于超复系的文章.庞加莱在1903年关于线性微分方程的代数积分的文章又回到交换代数的研究上来.他的方法使他引进一个方程的群代数,并把它分解为C上的单代数(即方阵代数).他首次把左理想和右理想的概念引入代数,并证明方阵代数中的任何左理想是极小左理想的直和.

  庞加莱是当时能够理解并欣赏S.李(Lie)及其后继者关于“连续群”工作的少数数学家之一,尤其是,他是早在20世纪初就能认识到嘉当论文的深度和广度的唯一数学家.1899年,庞加莱对于用新方法证明李的第三基本定理以及现在所谓的坎贝尔(Campbeel)-豪斯多夫(Hausdorff)公式感兴趣;他实际上第一次定义了现在所说的(复数域上的)李代数的“包络代数”,并由李代数已给的基对包络代数的“自然的”基加以描述,这个定理在近代李代数理论中成为基本的定理.

  6.微分方程.微分方程及其在动力学上的应用显然处于庞加莱数学思想的中心地位,他从各种可能的角度研究这个问题,他把分析中的全套工具应用到微分方程理论中.几乎每年都要就此发表论文.事实上,整个自守函数理论一开始就是由求积具有代数系数的线性微分方程的思想引起的.他同时研究了一个线性微分方程在一个“非正则”奇点的邻域中的局部问题,首次证明了怎样得到积分渐进展开.他还研究了如何决定(复数域中)所有一阶微分方程关于y和y′是代数的且有固点的奇点,这后来被皮卡推广到二阶方程,并在20世纪初期导致P.潘勒韦(Painlevé)及其学派的成果.

  庞加莱在这个领域中的最杰出贡献是微分方程定性理论,它是在其创造者手中立即臻于完善的.他发现在分析微分方程可能解的类型时,奇点起着关键性的作用.他把奇点分为四类——焦点、鞍点、结点和中心,并阐述了解在这些点附近的性态.在1885年后,他关于微分方程的论文大都涉及到天体力学,特别是三体问题.

  对于物理学问题的持久兴趣肯定把庞加莱引向数学物理学的偏微分方程所导出的数学问题,在这方面他从未忽略他所用的方法和他所得到的结果可能存在的物理意义.他在1890年的一篇文章中讨论了狄利克雷(Dirichlet)问题,发明了“扫散方法”,这种极其富于独创性的方法在20世纪20年代和30年代出现的位势理论上起着重要作用.

  此外,庞加莱还在非欧几何、渐近级数、概率论(例如,他最先使用了“遍历性”的概念,这成为统计力学的基础)等数学分支中也有所建树.庞加莱在物理学、天体力学、科学哲学方面的工作请见《世界著名科学家传记·物理学家Ⅰ》.

    7.三体问题

    在1887年,为了祝贺他的60岁寿诞,瑞典国王奥斯卡二世赞助了一项现金奖励的竞赛,征求太阳系的稳定性问题的解答,这是三体问题的一个变种。虽然庞加莱没有成功给出一个完整的解答,他的工作令人印象深刻,以至于他还是在1888年赢得了奖金。庞加莱发现这个系统的演变经常是浑沌的,意思是说如果初始状态有一个小的扰动,例如一个体的初始位置有一个小的变动,则后来的状态可能会有极大的不同。如果该小变动不能被我们的测量仪器所探测,则我们不能预测最终状态为何。裁判之一,著名的卡尔·韦尔斯特拉斯说,"这个工作不能真正视为对所求的问题的完善解答,但是它的重要性使得它的出版将标志着天体力学的一个新时代的诞生。"

    韦尔斯特拉斯并不知道他自己的预测有多准确。在庞加莱的论文中,他描述了例如同宿点(homoclinic points)之类的新思想。这个备忘录会在Acta Mathematica中出版,编辑找到一个错误。该错误实际上导致了庞加莱一些进一步的发现,它们现在被视为混沌理论的开端。该备忘录出版于1890年晚些时候。

    8.相对论方面的工作

http://s1/mw690/003uUXaLzy76DC6br6o00&690
玛丽·居里和庞加莱在1911年索尔维会议上讨论。


    1893年他参加了法国经度局,参与了把全世界的时间同步的活动。在1897年,他支持了一个没有成功的把弧度测量十进制化进而把时间和经度十进制化的建议。这项工作导致他考虑高速移动的钟如何互相同步的问题。在1898年,在"时间的测量"中,他阐述了相对论原理,根据这个原理,没有机械或电磁试验可以区分匀速运动的状态和静止的状态。和荷兰理论家洛仑兹的合作中,他把时间的物理推向极限来解释快速运动的电子的行为。但正是阿尔伯特·爱因斯坦才准备好了重建整个物理大厦,是他推出了成功的新相对性模型。

    亨利·庞加莱和阿尔伯特·爱因斯坦在他们在相对论上的工作有一段有趣的关系 -- 实际上可以说是缺乏关系(Pais, 1982年)。他们的交互开始于1905年,当时庞加莱发表了他的第一篇关于相对论的论文。.该论文的课题是"部分运动学的,部分动力学的",并包括洛仑兹关于洛伦兹变换(实际上是庞加莱给它这个名字的)的证明的更正。大约一个月后,爱因斯坦发表了他在相对论上的第一篇论文。两人都继续发表相对论上的工作,但是没有任何一个引用对方的工作。爱因斯坦不仅不引用庞加莱的工作,他也宣称从未读过! (不知道他是否最终读过庞加莱的论文。) 爱因斯坦最后引用了庞加莱并且承认了他在相对论上的工作,这是在1921年称为`Geometrie und Erahrung'演讲稿中。在爱因斯坦其后的生涯中,他评论庞加莱为相对论的先驱之一。在爱因斯坦死前,爱因斯坦说:“洛仑兹已经认出了以他命名的变换对于麦克斯韦方程组的分析是基本的,而庞加莱进一步深化了这个远见...。”
    9.哲学
    庞加莱有着与罗素(Bertrand Russell) 和 Gottlob Frege(弗雷格)截然不同的哲学思想。罗素和Frege相信数学是逻辑的一个分支. 庞加莱强烈反对。他认为直觉 intuition 才是数学的生命. 庞加莱在他的书Science and Hypothesis中写道这样一个有趣的观点: “对于一个肤浅的观察者来说,科学真理是不存在任何怀疑的可能的;科学的逻辑是不会错的,即使有时候科学家犯错,那也只是因为他们错误运用了科学的法则。” 庞加莱相信算术是一个综合科学(synthetic science)。他争论说皮亚诺公理不能不绕圈的用归纳法证明(Murz, 2001年),所以得出结论说算术是先验的综合的而不是演绎的。庞加莱进一步说明数学不能从逻辑导出因为它不是演绎的。他的观点和康德的一致Kant (Kolak, 2001年)。但是庞加莱不是和康德在哲学和数学的所有分支中观点相同。例如,在几何中,非欧几何的结构可以解析(演绎)的得到。

    10.思想特色
   
庞加莱的工作习惯被比作从一朵花飞到另一朵花的蜜蜂。庞加莱对他自己的意识工作的方式感兴趣;他研究了他的习惯并在1908年在巴黎一般心理学学院关于他的观察给了一个报告。他把他的思考方式和他如何作了几个发现联系起来。

    数学家达布(Darboux)宣称他是un intuitif(直觉的),论证说这可以从他经常用视觉表示来工作显示出来。他不关心严格性,且不喜欢逻辑。他相信逻辑不是发明之道,而是一个结构化想法的方法,而且逻辑限制思想。
    Toulouse所归纳的特点
    他的精神组织不仅对他自己很有趣,对于Toulouse也是,他是巴黎高等学校心理学实验室的心理学家。Toulouse写了一本称为亨利·庞加莱的书(1910年)。在其中,他讨论了庞加莱的通常时间表:
    他在每天同样时间工作,分成短的时期。他每天从事数学研究四小时,在上午10点到中午之间,然后再在下午5点到7点之间。他在晚上晚些时候读期刊里的文章。
    他有出众的记忆力,并能记起他所读过的文本中任意一项的页和行。他也能够记起耳朵听到的准确词句。他一生保有这些能力。
    他的通常工作习惯是在头脑里完全解决一个问题,然后把完成的问题交付纸上。
    他左右手都灵活,近视。
    他能够将他所听到的东西图像化的能力被证明为很重要,特别是当他参加讲座的时候,因为他的视力差到无法看清他的演讲者在黑板上所写的东西。
    但是这些能力被他的一些缺点所平衡了一些:

    他体格上笨拙,艺术上无能。
    他总是急匆匆的,不喜欢返回来作改变或更正。
    他从不在一个问题上花太多时间,因为他相信下意识会在他在另一个问题上工作的时候继续在前一个问题上工作。
    另外,Toulouse说多数数学家从已经建立的原则工作,而庞加莱是每次从基本原理重新开始的那种(O'Connor等人, 2002年)

    他的思考方式可以很好的总结如下:

    Habitué à négliger les détails et à ne regarder que les cimes, il passait de l'une à l'autre avec une promptitude surprenante et les faits qu'il découvrait se groupant d'eux-mêmes autour de leur centre étaient instantanément et automatiquement classés dans sa mémoire. 翻译为:他忽略细节,从想法跳到想法,从每个想法收集起来的事实然后就合了起来并解决了问题。(Belliver, 1956年)

    1911年,庞加莱觉得身体不适、精力减退,他预感到自己活在世上的日子不会很长了.可是,他不愿放下手头的工作去休息,他头脑蕴育的新思想太多了,他不愿让它们和自己一起埋葬.在索尔维会议之后,他投身于量子论的研究,并撰写论文,发表讲演.同时,他还在思考一个新的数学定理,即把狭义三体问题的周期解的存在问题归结为平面的连续变换在某些条件下不动点的存在问题.

  临终前三周,庞加莱抱病在法国道德教育联盟成立大会上发表了最后一次公开讲演.他说:“人生就是持续的斗争”,“如果我们偶尔享受到相对的宁静,那正是因为我们先辈顽强斗争的结果.假使我们的精力、我们的警惕松懈片刻,我们就会失去先辈们为我们赢得的斗争成果.”庞加莱本人的一生就是持续斗争、永远进击的一生.

  1912年7月17日,庞加莱因血管栓塞突然去世.当时他正处在科学创造的高峰时期.V.沃尔泰拉(Volterra)中肯地评论道:“我们确信,庞加莱一生中没有片刻的休息.他永远是一位朝气蓬勃的、健全的战士,直至他的逝世.”
  
 

    11. 荣誉及奖项

    伦敦皇家天文学会金奖(1900年)
    布鲁斯奖(Bruce Medal) (1911年)
    以他命名
    月球上的庞加莱火山口
    小行星 2021庞加莱 

    12.出版物
    庞加莱对于代数拓扑的主要贡献在于Analysis situs(位相分析,1895年),它是第一个对拓扑真正系统的检视。

    他出版了两本重要著作,使得天体力学建立在严格的数学基础之上:

    天体力学新方法 ISBN 1563961172 (3 vols., 1892-99; 英语译本, 1967年)
   天体力学课程. (1905-10年).
    在通俗写作中,他通过如下作品帮助建立了对科学最基本的流行定义和看法:

    科学和假设, 1901年.
    科学的价值, 1904年.
    科学和方法, 1908年.
    Dernières pensées ("最后的想法");Ernest Flammarion版, 巴黎, 1913年.

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有