加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

matlab加、减、乘、除符号运算

(2013-01-29 06:41:53)
标签:

教育

分类: C和Matlab

A\B=inv(A)*b   等同于  A除以B

 

MATLAB提供了常用的算术运算符:+,-, ,∕(﹨),^(幂指数)。

应该注意:(∕)右除法和(﹨)左除法这两种符号对数值操作时,其结果相同,其斜线下为分母,如1∕4与4﹨1,其结果均为0.25,但对矩阵操作时,左、右除法是有区别的。

 

 

 

Arithmetic Operators + - * / \ ^ '

Matrix and array arithmetic

Syntax

A+B
A-B
A*B
A.*B
A/B
A./B
A\B
A.\B
A^B
A.^B
A'
A.'

Description

MATLAB® software has two different types of arithmetic operations. Matrix arithmetic operations are defined by the rules of linear algebra. Array arithmetic operations are carried out element by element, and can be used with multidimensional arrays. The period character (.) distinguishes the array operations from the matrix operations. However, since the matrix and array operations are the same for addition and subtraction, the character pairs .+ and .- are not used.

+

Addition or unary plus. A+B adds A and B. A and B must have the same size, unless one is a scalar. A scalar can be added to a matrix of any size.

-

Subtraction or unary minus. A-B subtracts B from A. A and B must have the same size, unless one is a scalar. A scalar can be subtracted from a matrix of any size.

*

Matrix multiplication. C = A*B is the linear algebraic product of the matrices A and B. More precisely,

For nonscalar A and B, the number of columns of A must equal the number of rows of B. A scalar can multiply a matrix of any size.

.*

Array multiplication. A.*B is the element-by-element product of the arrays A and B. A and B must have the same size, unless one of them is a scalar.

/

Slash or matrix right division. B/A is roughly the same as B*inv(A). More precisely, B/A = (A'\B')'. See the reference page for for more information.

./

Array right division. A./B is the matrix with elements A(i,j)/B(i,j). A and B must have the same size, unless one of them is a scalar.

\

Backslash or matrix left division. If A is a square matrix, A\B is roughly the same as inv(A)*B, except it is computed in a different way. If A is an n-by-n matrix and B is a column vector with n components, or a matrix with several such columns, then X = A\B is the solution to the equation AX = B. A warning message is displayed if A is badly scaled or nearly singular. See the reference page for for more information.

If A is an m-by-n matrix with m ~= n and B is a column vector with m components, or a matrix with several such columns, then X = A\B is the solution in the least squares sense to the under- or overdetermined system of equations AX = B. The effective rank, k, of A is determined from the QR decomposition with pivoting (see for details). A solution X is computed that has at most k nonzero components per column. If k < n, this is usually not the same solution as pinv(A)*B, which is the least squares solution with the smallest norm .

.\

Array left division. A.\B is the matrix with elements B(i,j)/A(i,j). A and B must have the same size, unless one of them is a scalar.

^

Matrix power. X^p is X to the power p, if p is a scalar. If p is an integer, the power is computed by repeated squaring. If the integer is negative, X is inverted first. For other values of p, the calculation involves eigenvalues and eigenvectors, such that if [V,D] = eig(X), then X^p = V*D.^p/V.

If x is a scalar and P is a matrix, x^P is x raised to the matrix power P using eigenvalues and eigenvectors. X^P, where X and P are both matrices, is an error.

.^

Array power. A.^B is the matrix with elements A(i,j) to the B(i,j) power. A and B must have the same size, unless one of them is a scalar.

'

Matrix transpose. A' is the linear algebraic transpose of A. For complex matrices, this is the complex conjugate transpose.

.'

Array transpose. A.' is the array transpose of A. For complex matrices, this does not involve conjugation.

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有