多元方差分析(MANOVA)

标签:
多元方差分析manova |
译自——Dallase E Johnson.Applied multivariate methods fro data analysts(影印版).北京: 高等教育出版社,2005
仅用于学习、交流。
我想应该上来就说明白,MANOVA 是干嘛用的:
The basic hypothesis testing results of a multivariate analysis of variance are not very exciting. If the multivariate tests are significant, then we know the groups being compared are different, but we do not know which ones are different or why they are different. Are all groups different? Are they different on all variables? Some variables? Which variables?
If the multivariate tests are not significant, then does this mean that the groups being compared do not differ on any of the variables? Or does it mean that they do not vary many variables, so that the overall test has low power and, as a result, the MANOVA test statistic is not significant?
Many unanswered questions remain regardless of whether a MANOVA test statistic is statistically significant or not. A primary reason for conducting a MANOVA is to gain some guidance as to how you should appropriately proceed to answer the important questions raised in the preceding two paragraphs.
多元方差分析 (MANOVA)
http://s3/bmiddle/b5c8908cgd2ae6e499a92&690
该模型写成矩阵形式为
http://s11/bmiddle/b5c8908cgd2ae702fc9ca&690
其中
http://s16/bmiddle/b5c8908cgd2ae5f304aff&690
1 假设条件
http://s11/mw690/b5c8908cgd2ae86c8563a&690服从Np(0, Σ)的分布,其中 Σ 为正定矩阵。
换句话说,多元方差分析要求不同实验单元的误差不相关,但允许同一实验单元误差向量中的元素相关。
2 检验统计量
用 E 表示误差平方和与交叉乘积矩阵,现在将用 H 表示任意特殊假设平方和与交叉乘积矩阵。要求MANOVA的实验分析中,需要考虑几个假设矩阵,用H 表示任意假设的矩阵。
所有MANOVA检验程序都以 H 和 E 的函数为基础,好的检验程序实际上是HE-1 和/或 H(H + E)-1的非零特征根的函数。
HE-1 和/或 H(H + E)-1的非零特征根数用 s 表示,s = min(h, p),h 是相应于假设矩阵的自由度,p 通常代表所分析的相应变量的个数。
下面是最流行的多元方差检验方法:
1.
2.
3.
4.
5.
3 检验的比较
#################################################################################
以下引自 stata 技术档案,仅用于学习。
ANOVA was pioneered by Fisher. It features prominently in his texts on statistical methods and his design of experiments (1925, 1935).
Many books discuss ANOVA; see, for instance, Altman (1991); van Belle et al. (2004); Cobb (1998); Snedecor and Cochran (1989); or Winer, Brown, and Michels (1991).
For a classic source, see Scheff´e (1959).
Kennedy and Gentle (1980) discuss ANOVA’s computing problems.
Edwards (1985) is concerned primarily with the relationship between multiple regression and ANOVA.
Acock (2010, chap. 9) illustrates his discussion with Stata output.
Repeated-measures ANOVA is discussed in Winer, Brown, and Michels (1991); Kuehl (2000); and Milliken and Johnson (2009).
Pioneering work in repeated-measures ANOVA can be found in Box (1954); Geisser and Greenhouse (1958); Huynh and Feldt (1976); and Huynh (1978).