R软件包vegan教程--各章实例之命令
(2012-12-14 15:14:08)
标签:
r软件vegan软件包排序生态学校园 |
作者(Jari Okanen)面向熟悉 R 操作的读者。想要运行文中实例、得到对应的结果,有时要先加载一些东西(原文 session info 部分,在6.3小节末)。
chapter2.1
library(permute)
library(vegan)
data(varespec)
vare.dis <- vegdist(varespec)
vare.mds0 <- monoMDS(vare.dis)
stressplot(vare.mds0, vare.dis)
ordiplot(vare.mds0, type = "t")
vare.mds <- metaMDS(varespec,
trace = FALSE)
vare.mds
plot(vare.mds, type = "t")
chapter 2.2
library(permute)
library(vegan)
data(varechem)
rankindex(scale(varechem), varespec,
c("euc","man","bray","jac","kul"))
dis <- vegdist(decostand(varespec, "norm"), "euclid")
dis <- vegdist(decostand(varespec, "hell"), "euclidean")
d <- vegdist(varespec, "bray",
binary = TRUE)
d <- designdist(varespec, "(A+B-2*J)/(A+B)")
d <- designdist(varespec, "(b+c)/(2*a+b+c)",
abcd=TRUE)
chapter2.3
tmp <-
wisconsin(sqrt(varespec))
dis <- vegdist(tmp)
vare.mds0 <- monoMDS(dis)
pro <- procrustes(vare.mds, vare.mds0)
pro
plot(pro)
plot(pro, kind = 2)
chapter 2.4
vare.pca <-
rda(varespec)
vare.pca
plot(vare.pca)
sum(apply(varespec, 2, var))
biplot(vare.pca, scaling = -1)
vare.pca <- rda(varespec,
scale = TRUE)
vare.pca
plot(vare.pca, scaling = 3)
dim(varespec)
vare.ca <- cca(varespec)
vare.ca
plot(vare.ca)
chisq.test(varespec/sum(varespec))
plot(vare.ca, scaling = 1)
chapter 2.5
vare.dca <-
decorana(varespec)
vare.dca
plot(vare.dca, display="sites")
chapter 2.6
data(BCI)
mod <- decorana(BCI)
plot(mod)
names(BCI)[1:5]
shnam <- make.cepnames(names(BCI))
shnam[1:5]
pl <- plot(mod,
dis="sp")
identify(pl, "sp", labels=shnam)
stems <- colSums(BCI)
plot(mod, dis="sp", type="n")
sel <- orditorp(mod, dis="sp", lab=shnam, priority=stems, pcol =
"gray", pch="+")
plot(mod, dis="sp", type="n")
ordilabel(mod, dis="sp", lab=shnam, priority = stems)
sel[1:14]
chapter 3.1
data(varechem)
ef <- envfit(vare.mds, varechem, permu = 999)
ef
plot(vare.mds, display = "sites")
plot(ef, p.max = 0.1)
chapter 3.2
ef <- envfit(vare.mds ~ Al + Ca, varechem)
plot(vare.mds, display = "sites")
plot(ef)
tmp <- with(varechem, ordisurf(vare.mds, Al, add = TRUE))
with(varechem, ordisurf(vare.mds, Ca, add = TRUE, col = "green4"))
chapter 3.3
data(dune)
data(dune.env)
dune.ca <- cca(dune)
ef <- envfit(dune.ca, dune.env, permutations = 999)
ef
plot(dune.ca, display = "sites")
plot(ef)
plot(dune.ca, display = "sites",
type = "p")
with(dune.env, ordiellipse(dune.ca, Management, kind = "se", conf =
0.95))
with(dune.env, ordispider(dune.ca, Management, col = "blue", label=
TRUE))
with(dune.env, ordihull(dune.ca, Management, col="blue",
lty=2))
chapter 4.1
library(permute)
library(vegan)
data(varechem)
vare.cca <- cca(varespec ~ Al
+ P + K, varechem)
vare.cca
plot(vare.cca)
library(scatterplot3d)
ordiplot3d(vare.cca, type = "h")
dune.cca <- cca(dune ~
Management, dune.env)
plot(dune.cca)
dune.cca
vare.cca <- cca(dune ~
Moisture, dune.env)
plot(vare.cca)
chapter 4.2
anova(vare.cca)
mod <- cca(varespec ~ Al + P +
K, varechem)
anova(mod, by = "term", step=200)
anova(mod, by = "margin", perm=500)
anova(mod, by="axis", perm=1000)
chapter 4.3
mod1 <- cca(varespec ~ .,
varechem)
mod1
plot(procrustes(cca(varespec), mod1))
mod0 <- cca(varespec ~ 1,
varechem)
mod <- step(mod0, scope = formula(mod1), test = "perm")
mod
modb <- step(mod1, scope =
list(lower = formula(mod0), upper = formula(mod1)), trace =
0)
modb
modb$anova
vif.cca(mod1)
vif.cca(mod)
chapter 4.4
spenvcor(mod)
dune.cca <- cca(dune ~
Management, dune.env)
plot(dune.cca, display = c("lc", "wa"), type = "p")
ordispider(dune.cca, col="blue")
chapter 4.5
pred <- calibrate(mod)
head(pred)
with(varechem, plot(Al,
pred[,"Al"] - Al, ylab="Prediction Error"))
abline(h=0, col="grey")
library(mgcv)
plot(mod, display = c("bp", "wa", "lc"))
ef <- with(varechem, ordisurf(mod, Al, display = "lc", add =
TRUE))
chapter 4.6
dune.cca <- cca(dune ~
Management + Condition(Moisture), dune.env)
plot(dune.cca)
dune.cca
anova(dune.cca, perm.max =
2000)
with(dune.env, anova(dune.cca, strata = Moisture))
chapter 5.1
library(permute)
library(vegan)
betad <- betadiver(dune, "z")
adonis(betad ~ Management, dune.env, perm=200)
adonis(betad ~ A1*Management, dune.env, perm = 200)
chapter 5.2
mod <- with(dune.env,
betadisper(betad, Management))
mod
plot(mod)
boxplot(mod)
anova(mod)
permutest(mod)
chapter 5.3
pc <- prcomp(varechem, scale =
TRUE)
pc<- scores(pc, display = "sites", choices = 1:4)
edis <- vegdist(pc, method = "euclid")
vare.dis <- vegdist(wisconsin(sqrt(varespec)))
mantel(vare.dis, edis)
plot(vare.dis, edis)
chapter 5.4
pc <- scores(pc, choices =
1:2)
pro <- protest(vare.mds, pc)
plot(pro)
pro
chapter 6.1
library(permute)
library(vegan)
data(dune)
dis <- vegdist(dune)
clus <- hclust(dis, "single")
plot(clus)
cluc <- hclust(dis,
"complete")
plot(cluc)
cluc <- hclust(dis,
"complete")
plot(cluc)
clua <- hclust(dis,
"average")
plot(clua)
range(dis)
cor(dis, cophenetic(clus))
cor(dis, cophenetic(cluc))
cor(dis, cophenetic(clua))
chapter 6.2
plot(cluc)
rect.hclust(cluc, 3)
grp <- cutree(cluc, 3)
boxplot(A1 ~ grp, data=dune.env, notch = TRUE)
ord <- cca(dune)
plot(ord, display = "sites")
ordihull(ord, grp, lty = 2, col = "red")
plot(ord, display="sites")
ordicluster(ord, cluc, col="blue")
mst <- spantree(dis, toolong =
1)
plot(mst, ord=ord, pch=21, col = "red", bg = "yellow", type =
"t")
chapter 6.3
wa <- scores(ord, display =
"sites", choices = 1)
den <- as.dendrogram(clua)
oden <- reorder(den, wa, mean)
op <- par(mfrow=c(2,1),
mar=c(3,5,1,2)+.1)
plot(den)
plot(oden)
par(op)
vegemite(dune, use = oden, zero = "-")
后一篇:方差分析与 R 软件