《乘法交换律和结合律》教材分析
广饶县第一实验小学 李岩青
一、教材解读
本节教学乘法运算的交换律、结合律。在数学基础理论中,自然数乘法的定义有多种方式。用“同数连加”定义乘法,相对于其他各种定义,比较直观,容易描述,所以一直被小学数学教材所采用。既然是同数连加,那么“相同加数”与“相同加数的个数”就是客观存在的,非人为的,至于分别叫做被乘数、乘数,还是统称为乘数或因数,则是人为的,它们的书写位置也是人为的。因此,尽管我们在引进乘法时,不再规定两个乘数的书写位置,但同数连加的定义本身与其他定义一样,都没有包含乘法的交换律,所以教材在这里正式概括乘法交换律还是有必要的。
乘法的交换律、结合律,除了从形式上抽象地加以证明之外,也可以依据“同数连加”的定义,借助直观作出说明。例如对于乘法交换律,可以通过直观说明b个a连加与a个b连加的结果相等。
在五条运算定律中,乘法的交换律、结合律与加法的交换律、结合律一样,都是同一种运算的规律。
教材以学生参加植树活动的情境为载体设置主题图,由图引出例1、例2,为概括乘法交换律、结合律提供具体的事例。这样编排,能使学生在解决问题的同时,发现、感悟、描述规律。
这一课时,虽然没有专设例题讲解运用乘法运算定律进行简便计算,但在得出乘法运算定律的例题中已有所孕伏,在练习中也有所体现,使学生初步体验乘法运算定律的运用。到下一节,再集中学习运算定律在解决实际问题和计算中的应用。
二、教学建议
1.可以参照第1节的教学建议。只是在概括规律的过程中和用字母表示运算定律的过程中,注意利用学生在上节内容的学习中所获得的经验,进一步发挥学生的主观能动性。
2.本节内容可以用3课时进行教学。
具体内容的说明和教学建议
1.主题图。
编写意图
这幅图以植树为背景,展示了植树过程中同学们挖坑、种树、抬水、浇树等活动的情境。
教学建议
教学时可以先让学生看主题图,说说图中给了我们哪些信息,学生可以按自己看到的说,也可以把图中的两段说明文字复述一遍。再根据这些信息引导学生发现可解决的一些问题。学生可能会提出多个问题,其中有些问题,如“每组有几人?”可直接解决。学生们提出的问题都可展示,为后面的例题教学做准备。
2.例1。
编写意图
例1是在主题图的基础上提出问题“负责挖坑、种树的一共有多少人?”解答这个问题所需要的条件,都在主题图中。
教学建议
教学时可以让学生自己解答,学生一般都能说出4×25和25×4两个算式。接着提问:这两个算式得数是否相等?都表示什么?两个算式之间可以用什么符号连接?然后让学生再举出几个这样的例子,再提问:看看从中能发现什么?你能用自己的话说出你发现的规律吗?学生在以前的学习中,对乘法交换律已有初步的认识,这里通过具体例子,采用不完全归纳的方法,使学生发现任意两个数相乘都有同样的性质。在此基础上,可以让学生自己给这个规律命名,由于学生刚学了加法交换律,所以一般都能自己说出乘法交换律的名称。
然后,启发学生用自己喜欢的方式表示乘法交换律:试一试,用你喜欢的符号表示两个因数,你能用式子表示乘法交换律吗?看看谁的表示方法既简单又清楚?得出a×b=b×a之后,应让学生说一说:这里的a、b可以是哪些数?从而促使学生体会用字母表示数,能把运算规律非常简单明了地表示出来。
进一步,可让学生在主题图中,找出可用乘法交换律解决的其他问题,并列出算式。
3.例2及“做一做”。
编写意图
(1)例2仍然是利用主题图提出问题“一共要浇多少桶水?”从解决这个问题的两种算法中,可以得到乘法结合律的一个实例。在此基础上,引导学生观察、比较、概括得出乘法结合律,其教学的安排与例1大致相同。
(2)第35页“做一做”的两道题分别是乘法交换律在计算中的应用与乘法结合律在解决实际问题中的应用,目的在于通过应用加以巩固,加深印象,并使学生初步看到乘法交换律与乘法结合律的作用。
教学建议
(1)教学时可以让学生先根据问题试着从主题图中找到所需的条件,然后放手让学生自己列出算式并计算。通常,根据不同的解题思路会有学生列出(25×5)×2与25×(5×2)两种算式,可以让学生说说是怎么想的。引导学生比较两种算法的异同:计算顺序不同,但解决的是同一个问题,计算结果也相同,所以能用等号把这两个算式连起来。这里,还可让学生通过比较,初步体会到两个算式虽然结果相同,但后一个算式计算起来更简便。接着,可以让学生再自己编出几个类似例2这样的算式,以积累更丰富的感性认识。然后引导学生进行概括:先把前两个数相乘,与先把后两个数相乘,结果相等,再让学生用字母表示。这一教学过程,也可以通过让学生完成第35页上填空的方式进行。而后的教学与例1基本相似,但可以比教学例1时更放手些。
(2)小结时,让学生进一步思考小精灵提出的问题:“比较加法交换律和乘法交换律、加法结合律和乘法结合律,你发现了什么?”要引导学生通过观察、比较明确:交换律是两数相加、相乘的规律,即交换加(因)数的位置,和(积)不变;结合律是三数相加、相乘的规律,既可以从左往右依次计算,也可以先把后两个数先相加(乘),和(积)不变。在这一活动中,应允许学生用自己的话,叙述自己的发现。
(3)“做一做”的两道题可以让学生各自独立尝试,再作交流。第1题的右边一题,交换位置验算时出现了三位数的乘法。由于百位上是1,多数学生有能力类推。对于有困难的学生,教师可给予指导,或者请会算的学生介绍,由学生教学生。第2题学生容易想到的算式是2×24×5或24×2×5,这里可以允许学生按运算顺序算,因为后面第3节的例4还会专门讨论乘法交换律和结合律的应用。当然也可以启发学生依据所学运算定律使计算简便,即2×24×5=24×(2×5)。如果有学生直接列出24×(2×5)或2×5×24之类的算式,应予以肯定。因为其中有的学生在列式时就考虑到了怎样使计算简便。
三、课时安排
1课时
四、课型
新授
加载中,请稍候......