从贝叶斯方法谈到贝叶斯网络(下)
2.4 因子图
http://img.blog.csdn.net/20141111005823359
- 第二行:对联合概率关于b,x,c求和(在d=1的条件下),从而消去b,x,c,得到s和d=1的联合概率。
- 第三行:最开始,所有变量都在sigma(d=1,b,x,c)的后面(sigma表示对“求和”的称谓),但由于P(s)和“d=1,b,x,c”都没关系,所以,可以提到式子的最前面。而且P(b|s)和x、c没关系,所以,也可以把它提出来,放到sigma(b)的后面,从而式子的右边剩下sigma(x)和sigma(c)。
2.4.1 因子图的定义
- 变量节点http://img.blog.csdn.net/20141111011033218
-
因子(函数)节点http://img.blog.csdn.net/20141111010947528 - 边http://img.blog.csdn.net/20141111011114904存在。
- 我们已经知道,有向图模型,又称作贝叶斯网络(Directed Graphical Models, DGM, Bayesian Network)。
http://img.blog.csdn.net/20141222112243656
-
但在有些情况下,强制对某些结点之间的边增加方向是不合适的。使用没有方向的无向边,形成了无向图模型(Undirected
Graphical Model,UGM), 又被称为马尔科夫随机场或者马尔科夫网络(Markov Random Field,
MRF or Markov network)。
http://img.blog.csdn.net/20141222112302034
- 设X=(X1,X2…Xn)和Y=(Y1,Y2…Ym)都是联合随机变量,若随机变量Y构成一个无向图 G=(V,E)表示的马尔科夫随机场(MRF),则条件概率分布P(Y|X)称为条件随机场(Conditional Random Field, 简称CRF,后续新的博客中可能会阐述CRF)。如下图所示,便是一个线性链条件随机场的无向图模型:
http://img.blog.csdn.net/20141222111852153
- 贝叶斯网络中的一个因子对应因子图中的一个结点
- 贝叶斯网络中的每一个变量在因子图上对应边或者半边
- 结点g和边x相连当且仅当变量x出现在因子g中。
http://img.blog.csdn.net/20141111234424734
2.4.2 Sum-product算法
- 联合概率表示两个事件共同发生的概率。A与B的联合概率表示为http://img.my.csdn.net/uploads/201212/17/1355742607_7553.png。
-
边缘概率(又称先验概率)是某个事件发生的概率。边缘概率是这样得到的:在联合概率中,把最终结果中不需要的那些事件合并成其事件的全概率而消失(对离散随机变量用求和得全概率,对连续随机变量用积分得全概率)。这称为边缘化(marginalization)。A的边缘概率表示为P(A),B的边缘概率表示为P(B)。
- 一种是变量(Variable)到函数(Function)的消息:http://img.blog.csdn.net/20141112163109597,如下图所示
http://img.blog.csdn.net/20141112164507756
- 另外一种是函数(Function)到变量(Variable)的消息:http://img.blog.csdn.net/20141112163122468。如下图所示:
http://img.blog.csdn.net/20141112164805362
- 1、给定如下图所示的因子图:
- 2、sum-product 算法的消息计算规则为:
- 3、根据sum-product定理,如果因子图中的函数f 没有周期,则有:
- 1、删除贝叶斯网络中的若干条边,使得它不含有无向环
- 2、重新构造没有环的贝叶斯网络
- 3、选择loopy belief propagation算法(你可以简单理解为sum-product 算法的递归版本),此算法一般选择环中的某个消息,随机赋个初值,然后用sum-product算法,迭代下去,因为有环,一定会到达刚才赋初值的那个消息,然后更新那个消息,继续迭代,直到没有消息再改变为止。唯一的缺点是不确保收敛,当然,此算法在绝大多数情况下是收敛的。
3 参考文献和推荐阅读
- Thomas Bayes "An essay towards solving a Problem in the Doctrine of Chances"(贝叶斯定理原始论文):http://www.sbs-bvs.be/bsn57/bsn57-6.pdf;
- 《数理统计学简史 第三章 贝叶斯方法》;
- 《贝叶斯统计 茆诗松著》;
- “Julw”的搜索结果:http://www.gu1234.com/search?hl=zh-CN&site=webhp&source=hp&q=Julw&btnK=Google+搜索&gws_rd=ssl;
- 北京10月机器学习班第9次课,邹博讲贝叶斯网络的PPT:http://pan.baidu.com/s/1o69Lp1K;
- 相关wikipedia,比如贝叶斯定理的wiki:http://zh.wikipedia.org/zh/贝叶斯定理,贝叶斯网络的wiki:http://zh.wikipedia.org/wiki/貝氏網路。因子图中文wiki:http://zh.wikipedia.org/zh/因子图,英文wik:http://en.wikipedia.org/wiki/Factor_graph。
- 《统计决策论及贝叶斯分析 James O.Berger著》;
- 贝叶斯定理:http://www.guokr.com/question/547339/;
- 贝叶斯推断及其互联网应用(一):定理简介http://www.ruanyifeng.com/blog/2011/08/bayesian_inference_part_one.html;
- 贝叶斯推断及其互联网应用(三):拼写检查http://www.ruanyifeng.com/blog/2012/10/spelling_corrector.html;
- Google研发总监Peter Norvig解释拼写检查的原理:http://norvig.com/spell-correct.html;
- http://www.eng.yale.edu/pjk/eesrproj_02/luckenbill_html/node4.html(sum-product);
-
Pattern Recognition and Machine
Learning
Chapter 8, M. Jordan, J. Kleinberg, ect, 2006; -
D-Separation(D分离)-PRML-8.22-Graphical Model
by 小军:http://www.zhujun.me/d-separation-separation-d.html; - 因子图介绍 by Hans-Andrea Loeliger:http://www.robots.ox.ac.uk/~parg/mlrg/papers/factorgraphs.pdf;
- http://netclass.csu.edu.cn/jpkc2003/rengongzhineng/rengongzhineng/kejian/ai/ai/chapter4/442.htm;
- 贝叶斯网的R实现( Bayesian networks in R)(二)bnlearn(2):http://site.douban.com/182577/widget/notes/12817482/note/283039795/;
- 知乎上关于贝叶斯学派跟频率派的区别的讨论:http://www.zhihu.com/question/20587681;
- factor graph,因子图,势函数potential function,Template models:http://www.cnblogs.com/549294286/archive/2013/06/06/3121454.html;
- Online Bayesian Probit Regression介绍之Factor Graph:http://www.doingkong.com/?p=68;
-
An Introduction to
Factor Graphs,Hans-Andrea Loeliger,MLSB 2008:http://people.binf.ku.dk/~thamelry/MLSB08/hal.pdf; - Factor graph and sum-product algorithm, Frank R. Kschischang, Brendan J.Frey, ect, 1998:http://filebox.vt.edu/~rmtaylor/Graphical_Modeling/Intro_and_tutorial/Kschischang_ffg_sumproduct.pdf;
- A Tutorial on Inference and Learning in Bayesian Networks, Irina Rish:http://www.ee.columbia.edu/~vittorio/Lecture12.pdf;
- Probabilistic Graphical Models Directed GMs: Bayesian Networks:http://www.cs.cmu.edu/~epxing/Class/10708/lectures/lecture2-BNrepresentation.pdf;
- A Brief Introduction to Graphical Models and Bayesian Networks By Kevin Murphy, 1998:http://www.cs.ubc.ca/~murphyk/Bayes/bayes.html;
-
Probabilistic Models for
Unsupervised Learning(从一个统一的视角去理解: bayesian、MAP、ML,以及FA、EM、PCA、ICA、GMM、HMM等算法):http://mlg.eng.cam.ac.uk/zoubin/nipstut.pdf; - PRML概率图模型读书笔记:http://vdisk.weibo.com/s/DmxNcM5-7sGS;
- 12月14日,机器学习班第15次课,邹博讲条件随机场CRF的PPT:http://pan.baidu.com/s/1qWBdOD2。

加载中…