R语言时间序列分析——季节模型

标签:
r时间序列 |
一般情况下,φ0=0 即差分之后序列平稳无漂移时,有
library(TSA)
data(co2)
co2<-ts(co2,start=c(1994,1),fre=12)
plot(co2,ylab='CO2')
acf(co2,lag.max=36)
acf(as.vector(co2),lag.max=36)
plot(diff(co2),ylab='First
Difference of CO2',xlab='Time')
acf(as.vector(diff(co2)),lag.max=36)
plot(diff(diff(co2),lag=12))
acf(as.vector(diff(diff(co2),lag=12)),lag.max=36)
fit1.co2=arima(co2,order=c(0,1,1),seasonal=list(order=c(0,1,1),
period=12))
fit1.co2
------------------------------------------------------------------------------------------
Call:
arima(x = co2, order = c(0, 1,
1), seasonal = list(order = c(0, 1, 1), period = 12))
Coefficients:
s.e. 0.0791
0.1137
sigma^2 estimated as 0.5446:
log likelihood = -139.54, aic =
283.08
---------------------------------------------------------------------------------------
则可得结果如下(标准模型中MA部分的参数前有负号,所以要变为相反数):