[转载]抽象函数简介
(2013-08-13 15:40:55)
标签:
转载 |
分类: 数学资料 |
抽象函数简介
一般形式
常见函数的抽象函数形式
幂函数:f(xy)=f(x)f(y)
正比例函数:f(x+y)=f(x)+f(y)
对数函数:f(x)+f(y)=f(xy)
三角函数:f(x+y)+f(x-y)=2f(x)f(y) f(x)=cosx
指数函数:f(x+y)=f(x)f(y)
周期为n的周期函数:f(x)=f(x+n)
抽象函数具体化的证明
例题:f(xy)=f(x)+f(y),f(x)在定义域(0,+∞)上单调递增,f(2)=1。求证:f(x)=lgx/lg2即以二为底x的对数。
证明:定义域:相同
∵f(2*1)=f(2)+f(1)∴f(1)=0
∵f(1)=f(2)+f(1/2)∴f(1/2)=-1同理f(1/x)=-f(x)
∵f(x^k)=f(x*x*……*x*x)【k个x】=f(x)+f(x)+……+f(x)+f(x)【k个】=k*f(x),k∈Z且k>0(x=2时f(x^k)=k)
①
f(x^k)=f((1/x)^(-k))=f((1/x)*(1/x)*……*(1/x)*(1/x))【-k个x】=f(1/x)+f(1/x)+……+f(1/x)+f(1/x)【-k个】=(-k)*f(1/x),k∈Z且k<0(x=2时,f(x^k)=-k*f(1/2)=k)
f(x^0)=f(1)=0=0*f(x)(x=2时,f(x^k)=k=0)
∴f(2^k)=k,k∈Z②
∵p*f(2^(1/p))=f((2^(1/p))^p)=f(2^(1/p*p))=f(2)=1,k<>0且p∈Z(①)
∴f(2^(1/p))=1/p,p∈Z且p<>0
又∵②
∴f(2^(k/p))=f((2^(1/p))^k)=k*f(2^(1/p))=k*(1/p)*f(2)=k/p即f(2^m)=m对所有有理数成立
③
任取z∈R,{1}若f(2^z)2^z(由于单调性以及③),
在(2^z,y)上必定有q=2^(z+n),z+n为有理数,n>0,
f(q)=z-n0矛盾,导出矛盾所以f(2^z)
{2}同理f(2^z)>z不成立
又∵2^z>0,有定义域
所以f(2^z)=z
令x=2^z>0,f(x)=z=以二为底2^z的对数=以二为底x的对数
证毕。(若没有单调性要先证单调性)
其它表达形式
f(m+x)=f(n-x) 对称轴为(m+n)/2
f(m+x)+f(n-x)=1 关于((m+n)/2,0)对称
f(x+m)=f(x) 周期为m
求解抽象函数解法举例
特殊值法
特殊值法是处理抽象函数选择题的有力方法。根据抽象函数具有的性质,选择一个熟悉的函数作为特殊值代入验证,可以解决大部分选择题。
例1 定义在R上的函数f(x)满足f (x + y) = f (x) + f
(y)(x,y∈R),当x<0时, f (x)>0,则函数f (x)在[a,b]上 ( )
A 有最小值f (a) B 有最大值f[(a+b)/2] C 有最小值f (b)
D 有最大值f (b)
特殊函数
|
抽象函数
|
f (x)= x
|
f (xy) =f (x) f (y)
|
f (x)= 0
|
f (x+y)= f (xy)
|
f (x)= logax
|
f (xy) = f (x)+f (y)
|
此题作为选择题可采用特殊值函数f (x)= kx(k≠0)
∵当x <0时f (x) > 0即kx > 0。.∴k < 0,可得f
(x)在[a,b]上单调递减,从而在[a,b]上有最小值f(b)。
赋值法
根据所要证明的或求解的问题使自变量取某些特殊值,从而解决问题。
例2 除了用刚才的方法外,也可采用赋值法
解:令y = -x,则由f (x + y) = f (x) + f (y) (x,y∈R)得f
(0) = f (x) +f (-x)…..①,
再令x = y = 0得f(0)= f(0)+ f(0)得f (0)=0,代入①式得f (-x)=
-f(x)。
∵当x <0时,f (x) >0,
即f (x)在R上是一个减函数,可得f (x)在[a,b]上有最小值f(b)。
图像性质解法
抽象函数虽然没有给出具体的解析式,但可利用它的性质图象直接来解题。
抽象函数解题时常要用到以下结论:
定理1:如果函数y=f(x)满足f(a+x)=f(b-x),则函数y=f(x)的图象关于x=(a+b)/2 对称。
定理2:如果函数y=f(x)满足f(a+x)=f(b+x),则函数y=f(x)是一个周期函数,其周期应为∣b-a∣
分析:由 f(x)=f(2-x),得
f(x)的图象关于x=1对称,又f(x)是定义在R上的偶函数,图象关于y轴对称,根据上述条件,可先画出符合条件的一个图,那么就可以化无形为有形,化抽象为具体。从图上直观地判断,然后再作证明。
由图可直观得T=2,要证其为周期函数,只需证f (x) = f (2 + x)。
证明:f (x) = f (-x) = f [2-(-x)] = f (2 + x),∴
T=2。
∴f (x)是一个周期函数。
分析:根据函数的定义域,-m,m∈[-2,2],但是1- m和m分别在[-2,0]和[0,2]的哪个区间内呢?如果就此讨论,将十分复杂,如果注意到偶函数,则f
(x)有性质f(-x)= f (x)=f ( |x| ),就可避免复杂的讨论。
熟悉函数的基本知识
解答抽象函数题目的基础是熟悉函数的基本知识。如果连基本的函数知识都没有掌握,解决抽象函数问题只能是空谈。具体说,学好函数要掌握常见函数的性质。例如,中学涉及的函数性质一般有单调性、奇偶性、有界性及周期性;常见的函数有指数函数、对数函数、三角函数、二次函数、对勾函数(Y=X+A/X(A>0))等等。