抽屉原理(二)

分类: 小学奥数 |
抽屉原理(二)
武汉童老师奥数
在抽屉原理的第(2)条原则中,抽屉中的元素个数随着元素总数的增加而增加,当元素总数达到抽屉数的若干倍后,可用抽屉数除元素总数,写成下面的等式:
元素总数=商×抽屉数+余数
如果余数不是0,则最小数=商+1;如果余数正好是0,则最小数=商。
【典型例题】
【例1】幼儿园里有120个小朋友,各种玩具有364件。把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?
【试一试】
1、一个幼儿园大班有40名小朋友,班里有各种玩具125件。把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?
2、把16支铅笔放入三个笔盒内,至少有一个笔盒里的笔不少于6支。这是为什么?
【例2】布袋里有4种不同颜色的球,每种都有10个。最少取出多少个球,才能保证其中一定有3个球的颜色一样?
【试一试】
1、布袋中有足够多的5种不同颜色的球。最少取出多少个球才能保证其中一定有3个颜色一样的球?
2、一个容器里放有10块红木块、10块白木块、10块蓝木块,它们的形状、大小都一样,当你被蒙上眼睛去容器中取出木块时,为确保取出的木块中至少有4块颜色相同,应至少取出多少块木块?
【例3】某班共有46名学生,他们都参加了课外兴趣小组。活动内容有数学、美术、书法和英语,每人可参加1个、2个、3个或4个兴趣小组。问班级中至少有几名学生参加的项目完全相同?
【试一试】
1、某班有37个学生,他们都订阅了《小主人报》、《少年文艺》、《小学生优秀作文》三种报刊中的一、二、三种。其中至少有几位同学订的报刊相同?
2、学校开办了绘画、笛子、足球和电脑四个课外学习班,每个学生最多可以参加两个(可以不参加)。某班有52名同学,问至少有几名同学参加课外学习班的情况完全相同?
【例4】从1至30中,至少要取出几个不同的数,才能保证其中一定有一个数是3的倍数?
【试一试】
1、在1,2,3,……,49,50中,至少要取出多少个不同的数,才能保证其中一定有一个数能被5整除?
2、从1至120中,至少要取出几个不同的数才能保证其中一定有一个数是4的倍数?
【﹡例5】将400张卡片分给若干名同学,每人都能分到,但都不超过11张,试证明:至少有七名同学得到的卡片的张数相同。
【﹡试一试】
1、把280个桃分给若干只猴子,每只猴子不超过10个。证明无论怎样分,至少有6只猴子得到的桃一样多。
2、把61颗棋子放在若干个格子中,每个格子最多可以放5颗棋子。证明:至少有5个格子中的棋子数目相同。
课外作业
1、把25个球最多放在几个盒子里,才能至少有一个盒子里有7个球?
2、一副扑克牌共54张,其中1~13点各有4张,还有两张王的扑克牌。至少要取出几张牌,才能保证其中必有4张牌的点数相同?
3、库房里有一批篮球、排球、足球和铅球,每人任意搬运两个问:在31个搬运者中至少有几人搬运完全相同?
4、从1至36中,最多可以取出几个数,使得这些数中没有两数的差是5的倍数?
﹡5、汽车8小时行了310米,已知汽车第一小时行了25千米,最后一小时行了45千米。证明:一定存在连续的两小时,在这两小时内汽车至少行了80千米。