加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

如何解读组学数据分析筛选差异表达物指标

(2018-10-26 13:30:09)
标签:

多组学

组学数据分析

筛选差异表达物

分类: 研究方案
组学(蛋白质组、代谢组、转录组等等)数据分析,筛选差异表达物(蛋白质、代谢物、基因等等)往往是最常做的工作。。。

那么问题来了:筛选的指标有啥子撒?

针对蛋白质组和代谢组,最最常用的筛选差异表达物的指标有如下3种:
1. P值;
2. 倍数变化(Fold Change);
3. VIP值。

1. P值
通常是根据假设检验的方法得到,一般求得原始P值以后,强烈建议对P值再进行校正。然后卡校正以后的P值。通常设定的阈值是0.05【小于该阈值的留下】。

2. 倍数变化(Fold Change)
既然是倍数变化,那就是一个比值,所以其针对就是两组数据的表达量变化。通常设定的阈值是:上调是1.5或者2【大于该阈值的留下】,对应的下调是0.67或0.5【小于该阈值的留下】。

3. VIP值
全称variable influence on projection,该值通常是根据PLS-DA或者OPLS-DA方法得到,其反映的是每一个表达物对模型的贡献的程度。通常设定的阈值是1【大于该阈值的留下】。

温馨小结:
I. 这3个指标可以混用,文章中常见的是两者的混合,当然也可以这3个一起使用,很少见到只用一种指标的。参考文献:DOI: 10.1158/1078-0432.CCR-17-1707。

II. 上述说的阈值的设定都是常用值,肯定不是固定值。比如倍数变化,有些文章设定的上调阈值为1.3或者1.2,那么对应的下调的阈值就是0.77或者0.83。参考文献:DOI: 10.1021/acs.jproteome.8b00521。

III. 说了这么多,怎么求呢?在悟空云平台上即可简单快速求出结果。参考文献:DOI: 10.1021/acs.analchem.8b03065。

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有