应力集中与奇异问题
(2014-09-10 08:47:46)
标签:
cae |
分类: 应力集中 |
各种材料对应力集中的敏感程度不同。用塑性材料制成的零件在静载荷作用下,可以不考虑应力集中的影响。(塑性材料有屈服阶段,当局部应力达到屈服极限时,该处材料可继续增长,而应力确不增加。如果外力继续增加,增加的力就有截面上尚未达到屈服极限的材料来承担,使截面上其他点的应力相继达到屈服极限。应力不均匀程度大大降低,也限制了最大应力值)
但是零件承受周期性载荷或冲击载荷时,不论塑性材料还是脆性材料,应力集中对零件都会产生严重的影响。
(以上内容来自材料力学)
继续:
应力奇异可以来自与很多因素,比如荷载,边界条件,边界的光滑性,材料系数的光滑性,等等。 奇异点的存在导致有限元解的收敛速度很慢,尤其对于均匀划分的网格。有兴趣的可以试一下L形的平面问题,检查一下均匀划分网格情况下应变能的变化。使用局部细化或hp方法的原因是因为这两种方法能使有限元解较快的收敛。但是注意应力奇异点是不能够消除的。你的模型固定了,你的奇异点也固定了,通过计算是消除不掉的,计算是一个用估计解逼近一个真实解(精确解),精确解本身带有奇异点,怎么能够消除呢?所以尝试消除应力奇异点的做法是错误的。如果想消除应力奇异点,你的modelling过程就需要改变。比如二维平面单元,在某一节点处加集中力,那么此处就是一个奇异点。要消除它的话,可以把集中力变成集度线载荷加到一段长度很小的线上,奇异点就没有了。
现在问题来了,一方面我们知道角点处的应力无穷,另一方面我们知道对于很小的荷载,角点处的应力不可能是无穷的。问题出在什么地方呢?
有限元是用来解偏微分方程的工具。偏微分方程对导数的连续性是有要求的。但是有限元能够弱化对导数的要求,比如有限元要求一阶导数平方可积就行。所以有限元解可能比偏微分方程反映实际要解决的问题.
1.应力理论趋于无穷大不代表实际应力值无穷大.最大实际应力不会超过材料的屈服应力,当线性应力超过屈服应力时,应起动塑性应力分析.(假设载荷无穷小,但是奇异点处的应力还是无穷大,难道还要启动塑性应力分析。)
3.在单元形态不奇异下,细网格的应力更精确些,也就是更接近实际应力(应该是更接近精确解,即所要求解的偏微分方程的精确解).
我的总结及问题: