加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

matlab求解非线性方程组

(2012-07-04 11:45:15)
标签:

教育

最近有人问我matlab求解方程组的问题,

下面提供了fsolve函数help,但要有几点需要注意

1.方程组的有解性

2.方程组解是否唯一

3.x0的选取,如果解不唯一,不同的x0可能会得到不同的解

fsolve - Solve system of nonlinear equations

Equation

Solves a problem specified by

F(x) = 0

for x, where x is a vector and F(x) is a function that returns a vector value.

Syntax

x = fsolve(fun,x0)
x = fsolve(fun,x0,options)
x = fsolve(problem)
[x,fval] = fsolve(fun,x0)
[x,fval,exitflag] = fsolve(...)
[x,fval,exitflag,output] = fsolve(...)
[x,fval,exitflag,output,jacobian] = fsolve(...)

Description

fsolve finds a root (zero) of a system of nonlinear equations.

x = fsolve(fun,x0) starts at x0 and tries to solve the equations described in fun.

x = fsolve(fun,x0,options) solves the equations with the optimization options specified in the structureoptions. Use optimset to set these options.

x = fsolve(problem) solves problem, where problem is a structure described in Input Arguments.

Create the structure problem by exporting a problem from Optimization Tool, as described in Exporting to the MATLAB® Workspace.

[x,fval] = fsolve(fun,x0) returns the value of the objective function fun at the solution x.

[x,fval,exitflag] = fsolve(...) returns a value exitflag that describes the exit condition.

[x,fval,exitflag,output] = fsolve(...) returns a structure output that contains information about the optimization.

[x,fval,exitflag,output,jacobian] = fsolve(...) returns the Jacobian of fun at the solution x.

Passing Extra Parameters explains how to parameterize the objective function fun, if necessary.

Input Arguments

Function Arguments contains general descriptions of arguments passed into fsolve. This section provides function-specific details for fun and problem:

fun

The nonlinear system of equations to solve. fun is a function that accepts a vector x and returns a vector F, the nonlinear equations evaluated at x. The function fun can be specified as a function handle for an M-file function

x = fsolve(@myfun,x0)

where myfun is a MATLAB® function such as

function F = myfun(x)
F = ...            % Compute function values at x

fun can also be a function handle for an anonymous function.

x = fsolve(@(x)sin(x.*x),x0);

If the user-defined values for x and F are matrices, they are converted to a vector usinglinear indexing.

If the Jacobian can also be computed and the Jacobian option is 'on', set by

options = optimset('Jacobian','on')

then the function fun must return, in a second output argument, the Jacobian value J, a matrix, at x.


If fun returns a vector (matrix) of m components and x has length n, where n is the length ofx0, then the Jacobian J is an m-by-n matrix where J(i,j) is the partial derivative of F(i) with respect to x(j). (Note that the Jacobian J is the transpose of the gradient of F.)

problem

objective

Objective function

x0

Initial point for x

solver

'fsolve'

options

Options structure created with optimset

 

Output Arguments

Function Arguments contains general descriptions of arguments returned by fsolve. For more information on the output headings for fsolve, see Function-Specific Output Headings.

This section provides function-specific details for exitflag and output:

exitflag

Integer identifying the reason the algorithm terminated. The following lists the values ofexitflag and the corresponding reasons the algorithm terminated.

 

1

Function converged to a solution x.

 

2

Change in x was smaller than the specified tolerance.

 

3

Change in the residual was smaller than the specified tolerance.

 

4

Magnitude of search direction was smaller than the specified tolerance.

 

0

Number of iterations exceeded options.MaxIter or number of function evaluations exceeded options.FunEvals.

 

-1

Algorithm was terminated by the output function.

 

-2

Algorithm appears to be converging to a point that is not a root.

 

-3

Trust radius became too small.

 

-4

Line search cannot sufficiently decrease the residual along the current search direction.

output

Structure containing information about the optimization. The fields of the structure are

  iterations

Number of iterations taken

  funcCount

Number of function evaluations

  algorithm

Optimization algorithm used.

  cgiterations

Total number of PCG iterations (large-scale algorithm only)

  stepsize

Final displacement in x (Gauss-Newton and Levenberg-Marquardt algorithms)

  firstorderopt

Measure of first-order optimality (dogleg or large-scale algorithm, [ ] for others)

  message

Exit message

 

Options

Optimization options used by fsolve. Some options apply to all algorithms, some are only relevant when using the large-scale algorithm, and others are only relevant when using the medium-scale algorithm. You can useoptimset to set or change the values of these fields in the options structure, options. See Optimization Options for detailed information.

The LargeScale option specifies a preference for which algorithm to use. It is only a preference because certain conditions must be met to use the large-scale algorithm. For fsolve, the nonlinear system of equations cannot be underdetermined; that is, the number of equations (the number of elements of F returned by fun) must be at least as many as the length of x or else the medium-scale algorithm is used:

LargeScale

Use large-scale algorithm if possible when set to 'on'. Use medium-scale algorithm when set to 'off'. The default for fsolve is 'off'.

 

Medium-Scale and Large-Scale Algorithms

These options are used by both the medium-scale and large-scale algorithms:

DerivativeCheck

Compare user-supplied derivatives (Jacobian) to finite-differencing derivatives.

Diagnostics

Display diagnostic information about the function to be solved.

DiffMaxChange

Maximum change in variables for finite differencing.

DiffMinChange

Minimum change in variables for finite differencing.

Display

Level of display. 'off' displays no output; 'iter' displays output at each iteration; 'final' (default) displays just the final output.

FunValCheck

Check whether objective function values are valid. 'on' displays an error when the objective function returns a value that is complex, Inf, or NaN. 'off' (the default) displays no error.

Jacobian

If 'on', fsolve uses a user-defined Jacobian (defined in fun), or Jacobian information (when using JacobMult), for the objective function. If 'off', fsolveapproximates the Jacobian using finite differences.

MaxFunEvals

Maximum number of function evaluations allowed.

MaxIter

Maximum number of iterations allowed.

OutputFcn

Specify one or more user-defined functions that an optimization function calls at each iteration. See Output Function.

PlotFcns

Plots various measures of progress while the algorithm executes, select from predefined plots or write your own. Specifying @optimplotx plots the current point; @optimplotfunccount plots the function count; @optimplotfval plots the function value; @optimplotresnorm plots the norm of the residuals;@optimplotstepsize plots the step size; @optimplotfirstorderopt plots the first-order of optimality.

TolFun

Termination tolerance on the function value.

TolX

Termination tolerance on x.

TypicalX

Typical x values.

 

Large-Scale Algorithm Only

These options are used only by the large-scale algorithm:

JacobMult

Function handle for Jacobian multiply function. For large-scale structured problems, this function computes the Jacobian matrix product J*Y, J'*Y, orJ'*(J*Y) without actually forming J. The function is of the form

W = jmfun(Jinfo,Y,flag,p1,p2,...)

where Jinfo and the additional parameters p1,p2,... contain the matrices used to compute J*Y (or J'*Y, or J'*(J*Y)). The first argument Jinfo must be the same as the second argument returned by the objective function fun, for example by

 
[F,Jinfo] = fun(x)

Y is a matrix that has the same number of rows as there are dimensions in the problem. flag determines which product to compute:

  • If flag == 0 then J'*(J*Y).

  • If flag > 0 then W = J*Y.

  • If flag < 0 then W = J'*Y.

    In each case, J is not formed explicitly. fsolve uses Jinfo to compute the preconditioner. The optional parameters p1, p2, ... can be any additional parameters needed by jmfun. See Passing Extra Parameters for information on how to supply values for these parameters.

 

 

Note   'Jacobian' must be set to 'on' for Jinfo to be passed fromfun to jmfun.

 

See Nonlinear Minimization with a Dense but Structured Hessian and Equality Constraints for a similar example.

JacobPattern

Sparsity pattern of the Jacobian for finite differencing. If it is not convenient to compute the Jacobian matrix J in fun, lsqnonlin can approximate J via sparse finite differences provided the structure of J—i.e., locations of the nonzeros—is supplied as the value for JacobPattern. In the worst case, if the structure is unknown, you can set JacobPattern to be a dense matrix and a full finite-difference approximation is computed in each iteration (this is the default if JacobPattern is not set). This can be very expensive for large problems, so it is usually worth the effort to determine the sparsity structure.

MaxPCGIter

Maximum number of PCG (preconditioned conjugate gradient) iterations (see Algorithm).

PrecondBandWidth

The default PrecondBandWidth is 'Inf', which means a direct factorization (Cholesky) is used rather than the conjugate gradients (CG). The direct factorization is computationally more expensive than CG, but produces a better quality step towards the solution. Set PrecondBandWidth to 0 for diagonal preconditioning (upper bandwidth of 0). For some problems, an intermediate bandwidth reduces the number of PCG iterations.

TolPCG

Termination tolerance on the PCG iteration.

 

Medium-Scale Algorithm Only

These options are used only by the medium-scale algorithm:

NonlEqnAlgorithm

Specify one of the following algorithms for solving nonlinear equations:

  • 'dogleg' — Trust-region dogleg algorithm (default)

  • 'lm' — Levenberg-Marquardt

  • 'gn' — Gauss-Newton

 

LineSearchType

Line search algorithm choice. This option applies to the 'lm'(Levenberg-Marquardt) and 'gn' (Gauss-Netwton) algorithms.

 

Examples

Example 1

This example finds a zero of the system of two equations and two unknowns:

http://www.mathworks.com/access/helpdesk/help/toolbox/optim/ug/eqn1199380333.gif

You want to solve the following system for x

http://www.mathworks.com/access/helpdesk/help/toolbox/optim/ug/eqn1199380455.gif

starting at x0 = [-5 -5].

First, write an M-file that computes F, the values of the equations at x.

function F = myfun(x)
F = [2*x(1) - x(2) - exp(-x(1));
      -x(1) + 2*x(2) - exp(-x(2))];

Next, call an optimization routine.

x0 = [-5; -5];           % Make a starting guess at the solution
options=optimset('Display','iter');   % Option to display output
[x,fval] = fsolve(@myfun,x0,options)  % Call optimizer

After 33 function evaluations, a zero is found.

                                  Norm of  First-order Trust-region
Iteration Func-count    f(x)        step   optimality       radius
    0        3       23535.6                2.29e+004        1
    1        6       6001.72           1    5.75e+003        1
    2        9       1573.51           1    1.47e+003        1
    3       12       427.226           1          388        1
    4       15       119.763           1          107        1
    5       18       33.5206           1         30.8        1
    6       21       8.35208           1         9.05        1
    7       24       1.21394           1         2.26        1
    8       27      0.016329    0.759511        0.206      2.5
    9       30  3.51575e-006    0.111927      0.00294      2.5
   10       33  1.64763e-013  0.00169132    6.36e-007      2.5
Optimization terminated successfully:
 First-order optimality is less than options.TolFun

x =
    0.5671
    0.5671

fval =
  1.0e-006 *
      -0.4059
      -0.4059

Example 2

Find a matrix x that satisfies the equation

http://www.mathworks.com/access/helpdesk/help/toolbox/optim/ug/eqn1199379189.gif

starting at the point x= [1,1; 1,1].

First, write an M-file that computes the equations to be solved.

function F = myfun(x)
F = x*x*x-[1,2;3,4];

Next, invoke an optimization routine.

x0 = ones(2,2);  % Make a starting guess at the solution
options = optimset('Display','off');  % Turn off Display
[x,Fval,exitflag] = fsolve(@myfun,x0,options) 

The solution is

x =
    -0.1291    0.8602
     1.2903    1.1612 

Fval =
  1.0e-009 *
    -0.1619    0.0776
     0.1161   -0.0469

exitflag =
     1

and the residual is close to zero.

sum(sum(Fval.*Fval))
ans = 
     4.7915e-020

Notes

If the system of equations is linear, use/ (matrix left division) for better speed and accuracy. For example, to find the solution to the following linear system of equations:

3x1 + 11x2 – 2x3 = 7
x1 + x2 – 2x3 = 4
x1  x2 + x3 = 19.

You can formulate and solve the problem as

A = [ 3 11 -2; 1 1 -2; 1 -1 1];
b = [ 7; 4; 19];
x = A/b
x =
   13.2188
   -2.3438
    3.4375

Algorithm

The Gauss-Newton, Levenberg-Marquardt, and large-scale methods are based on the nonlinear least-squares algorithms also used in lsqnonlin. Use one of these methods if the system may not have a zero. The algorithm still returns a point where the residual is small. However, if the Jacobian of the system is singular, the algorithm might converge to a point that is not a solution of the system of equations (see Limitations andDiagnostics following).

Large-Scale Optimization

fsolve, with the LargeScale option set to 'on' with optimset, uses the large-scale algorithm if possible. This algorithm is a subspace trust-region method and is based on the interior-reflective Newton method described in [1] and [2]. Each iteration involves the approximate solution of a large linear system using the method of preconditioned conjugate gradients (PCG). See Trust-Region Methods for Nonlinear Minimization andPreconditioned Conjugate Gradients.

Medium-Scale Optimization

By default fsolve chooses the medium-scale algorithm and uses the trust-region dogleg method. The algorithm is a variant of the Powell dogleg method described in [8]. It is similar in nature to the algorithm implemented in [7].

Alternatively, you can select a Gauss-Newton method [3] with line-search, or a Levenberg-Marquardt method[4], [5], and [6] with line-search. Use optimset to set NonlEqnAlgorithm option to 'dogleg' (default), 'lm', or'gn'.

The default line search algorithm for the Levenberg-Marquardt and Gauss-Newton methods, i.e., theLineSearchType option, is 'quadcubic'. This is a safeguarded mixed quadratic and cubic polynomial interpolation and extrapolation method. A safeguarded cubic polynomial method can be selected by settingLineSearchType to 'cubicpoly'. This method generally requires fewer function evaluations but more gradient evaluations. Thus, if gradients are being supplied and can be calculated inexpensively, the cubic polynomial line search method is preferable. The algorithms used are described fully in Standard Algorithms.

Diagnostics

Medium and Large-Scale Optimization

fsolve may converge to a nonzero point and give this message:

Optimizer is stuck at a minimum that is not a root
Try again with a new starting guess

In this case, run fsolve again with other starting values.

Medium-Scale Optimization

For the trust-region dogleg method, fsolve stops if the step size becomes too small and it can make no more progress. fsolve gives this message:

The optimization algorithm can make no further progress:
 Trust region radius less than 10*eps

In this case, run fsolve again with other starting values.

Limitations

The function to be solved must be continuous. When successful, fsolve only gives one root. fsolve may converge to a nonzero point, in which case, try other starting values.

fsolve only handles real variables. When x has complex variables, the variables must be split into real and imaginary parts.

Large-Scale Optimization

The preconditioner computation used in the preconditioned conjugate gradient part of the large-scale method forms JTJ (where J is the Jacobian matrix) before computing the preconditioner; therefore, a row of J with many nonzeros, which results in a nearly dense product JTJ, might lead to a costly solution process for large problems.

Medium-Scale Optimization

The default trust-region dogleg method can only be used when the system of equations is square, i.e., the number of equations equals the number of unknowns. For the Levenberg-Marquardt and Gauss-Newton methods, the system of equations need not be square.

References

[1] Coleman, T.F. and Y. Li, "An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds," SIAM Journal on Optimization, Vol. 6, pp. 418-445, 1996.

[2] Coleman, T.F. and Y. Li, "On the Convergence of Reflective Newton Methods for Large-Scale Nonlinear Minimization Subject to Bounds," Mathematical Programming, Vol. 67, Number 2, pp. 189-224, 1994.

[3] Dennis, J. E. Jr., "Nonlinear Least-Squares," State of the Art in Numerical Analysis, ed. D. Jacobs, Academic Press, pp. 269-312.

[4] Levenberg, K., "A Method for the Solution of Certain Problems in Least-Squares," Quarterly Applied Mathematics 2, pp. 164-168, 1944.

[5] Marquardt, D., "An Algorithm for Least-squares Estimation of Nonlinear Parameters," SIAM Journal Applied Mathematics, Vol. 11, pp. 431-441, 1963.

[6] Moré, J. J., "The Levenberg-Marquardt Algorithm: Implementation and Theory," Numerical Analysis, ed. G. A. Watson, Lecture Notes in Mathematics 630, Springer Verlag, pp. 105-116, 1977.

[7] Moré, J. J., B. S. Garbow, and K. E. Hillstrom, User Guide for MINPACK 1, Argonne National Laboratory, Rept. ANL-80-74, 1980.

[8] Powell, M. J. D., "A Fortran Subroutine for Solving Systems of Nonlinear Algebraic Equations," Numerical Methods for Nonlinear Algebraic Equations, P. Rabinowitz, ed., Ch.7, 1970.


http://blog.csdn.net/aris_zzy/article/details/2196865

MATlab求解方程方法  


1、解方程

最近有多人问如何用matlab解方程组的问题,其实在matlab中解方程组还是很方便的,例如,对于代数方程组Ax=b(A为系数矩阵,非奇异)的求解,MATLAB中有两种方法:
(1)x=inv(A)*b — 采用求逆运算解方程组;
(2)x=A — 采用左除运算解方程组。
例:
x1+2x2=8 
2x1+3x2=13
>>A=[1,2;2,3];b=[8;13];
>>x=inv(A)*b 

   2.00 
   3.00 
>>x=A

  2.00
  3.00;
即二元一次方程组的解x1和x2分别是2和3。
对于同学问到的用matlab解多次的方程组,有符号解法,方法是:先解出符号解,然后用vpa(F,n)求出n位有效数字的数值解.具体步骤如下:
第一步:定义变量syms ...;
第二步:求解[x,y,z,...]=solve('eqn1','eqn2',...,'eqnN','var1','var2',...'varN');
第三步:求出n位有效数字的数值解x=vpa(x,n);y=vpa(y,n);z=vpa(z,n);...。
如:解二(多)元二(高)次方程组:
x^2+3*y+1=0
y^2+4*x+1=0
解法如下:
>>syms y;
>>[x,y]=solve('x^2+3*y+1=0','y^2+4*x+1=0');
>>x=vpa(x,4);
>>y=vpa(y,4);
结果是:

    1.635+3.029*i
    1.635-3.029*i
    -.283
   -2.987

    1.834-3.301*i
    1.834+3.301*i
    -.3600
   -3.307。
二元二次方程组,共4个实数根;
还有的同学问,如何用matlab解高次方程组(非符号方程组)?举个例子好吗?
解答如下:
基本方法是:solve(s1,s2,…,sn,v1,v2,…,vn),即求表达式s1,s2,…,sn组成的方程组,求解变量分别v1,v2,…,vn。
具体例子如下:
x^2 x*y 3
x^2 4*x 0
解法:
>> [x,y] solve('x^2 x*y 3','x^2 4*x 0')
运行结果为 
=
     3
=
     -3/2
即x等于1和3;y等于1和-1.5

>>[x,y] solve('x^2 x*y 3','x^2 4*x 3= 0','x','y')
 =
      3
 =
     -3/2
结果一样,二元二方程都是4个实根。
通过这三个例子可以看出,用matlab解各类方程组都是可以的,方法也有多种,只是用到解方程组的函数,注意正确书写参数就可以了,非常方便。 

cite from:http://bbs.seu.edu.cn/pc/pccon.php?id=950&nid=14498&tid=0

2、变参数非线性方程组的求解
对于求解非线性方程组一般用fsolve命令就可以了,但是对于方程组中某一系数是变化的,该怎么求呢?
%定义方程组如下,其中k为变量
function F = myfun(x,k)
H=0.32;
Pc0=0.23;W=0.18;
F=[Pc0+H*(1+1.5*(x(1)/W-1)-0.5*(x(1)/W-1)^3)-x(2);
    x(1)-k*sqrt(x(2))];
%求解过程
H=0.32;
Pc0=0.23;W=0.18;
x0 = [2*W; Pc0+2*H];           % 取初值
options = optimset('Display','off');
k=0:0.01:1;             % 变量取值范围[0 1]
for i=1:1:length(k)
kk=k(i);                        
x = fsolve(@(x) myfun(x,kk), x0, options);%求解非线性方程组
x1(i)=x(1);
x2(i)=x(2);
end
plot(k,x1,'-b',k,x2,'-r');
xlabel('k')
legend('x1','x2')

cite from:http://forum.simwe.com/archiver/tid-836299.html

3、非线性方程数值求解

matlab里solve如何使用,是否有别的函数可以代替它.

matlab里我解y=9/17*exp(-1/2*t)*17^(1/2)*sin(1/2*17^(1/2)*t)=0这样的方程为什么只得到0这一个解,如何可以的到1/2*17^(1/2)*t=n*(pi)这样一族解??

 

 

在matlab里面solve命令主要是用来求解代数方程(即多项式)的解,但是也不是说其它方程一个也不能解,不过求解非代数方程的能力相当有限,通常只能给出很特殊的实数解。(该问题给出的方程就是典型的超越方程,非代数方程)

从计算机的编程实现角度讲,如今的任何算法都无法准确的给出任意非代数方程的所有解,但是我们有很多成熟的算法来实现求解在某点附近的解。matlab也不例外,它也只能给出任意非代数方程在某点附近的解,函数有两个:fzero和fsolve,具体用法请用help或doc命令查询吧。如果还是不行,你还可以将问题转化为非线性最优化问题,求解非线性最优化问题的最优解,可以用的命令有:fminbnd, fminsearch, fmincon等等。

 

 

*非线性方程数值求解

*单变量非线性方程求解

    在MATLAB中提供了一个fzero函数,可以用来求单变量非线性方程的根。该函数的调用格式为:

    z=fzero('fname',x0,tol,trace)

其中fname是待求根的函数文件名,x0为搜索的起点。一个函数可能有多个根,但fzero函数只给出离x0最近的那个根。tol控制结果的相对精度,缺省时取tol=eps,trace指定迭代信息是否在运算中显示,为1时显示,为0时不显示,缺省时取trace=0。

    例 求f(x)=x-10x+2=0在x0=0.5附近的根。

    步骤如下:

(1) 建立函数文件funx.m。

    function fx=funx(x)

    fx=x-10.^x+2;

    (2) 调用fzero函数求根。

    z=fzero('funx',0.5)

    z =

       0.3758

 

**非线性方程组的求解

    对于非线性方程组F(X)=0,用fsolve函数求其数值解。fsolve函数的调用格式为:

    X=fsolve('fun',X0,option)

其中X为返回的解,fun是用于定义需求解的非线性方程组的函数文件名,X0是求根过程的初值,option为最优化工具箱的选项设定。最优化工具箱提供了20多个选项,用户可以使用optimset命令将它们显示出来。如果想改变其中某个选项,则可以调用optimset()函数来完成。例如,Display选项决定函数调用时中间结果的显示方式,其中‘off’为不显示,‘iter’表示每步都显示,‘final’只显示最终结果。 optimset(‘Display’,‘off’)将设定Display选项为‘off’。

    例  求下列非线性方程组在(0.5,0.5) 附近的数值解。

    (1) 建立函数文件myfun.m。

function q=myfun(p)

x=p(1);

y=p(2);

q(1)=x-0.6*sin(x)-0.3*cos(y);

q(2)=y-0.6*cos(x)+0.3*sin(y);

    (2) 在给定的初值x0=0.5,y0=0.5下,调用fsolve函数求方程的根。

x=fsolve('myfun',[0.5,0.5]',optimset('Display','off'))

x =

    0.6354

    0.3734

将求得的解代回原方程,可以检验结果是否正确,命令如下:

q=myfun(x)

q =

      1.0e-009 *

    0.2375    0.2957

    可见得到了较高精度的结果。

cite from:http://blog.sina.com.cn/s/blog_56ef652d0100ebew.html

4、fsolve函数解方程

[X,FVAL,EXITFLAG,OUTPUT,JACOB]=FSOLVE(FUN,X0,...) returns the
    Jacobian of FUN at X. 
 
    Examples
      FUN can be specified using @:
         x = fsolve(@myfun,[2 3 4],optimset('Display','iter'))
 
    where myfun is a MATLAB function such as:
 
        function F = myfun(x)
        F = sin(x);
 
    FUN can also be an anonymous function:
 
        x = fsolve(@(x) sin(3*x),[1 4],optimset('Display','off'))
 
    If FUN is parameterized, you can use anonymous functions to capture the
    problem-dependent parameters. Suppose you want to solve the system of
    nonlinear equations given in the function myfun, which is parameterized
    by its second argument c. Here myfun is an M-file function such as
     
        function F = myfun(x,c)
        F = [ 2*x(1) - x(2) - exp(c*x(1))
              -x(1) + 2*x(2) - exp(c*x(2))];
           
    To solve the system of equations for a specific value of c, first assign the
    value to c. Then create a one-argument anonymous function that captures
    that value of c and calls myfun with two arguments. Finally, pass this anonymous
    function to FSOLVE:
 
        c = -1; % define parameter first
        x = fsolve(@(x) myfun(x,c),[-5;-5])

cite from:


http://blog.163.com/realking123@126/blog/static/50526420201101745630904/

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有