几个重要不等式及其应用

标签:
高考指导杂谈 |
分类: 初等数学 |
1.几个重要的不等式
①均值不等式:
Ⅰ、两个正数的平均不等式(即基本不等式):
模型:如果,,那么,当且仅当时,等号成立。
Ⅱ、三个正数的平均不等式:
模型:如果,,,那么,当且仅当时,等号成立。
Ⅲ、个正数的平均不等式:
模型:如果,那么,当且仅当
时,等号成立。
②柯西不等式:
Ⅰ、二维形式的柯西不等式:
模型:如果都是实数,那么,当且仅当,或时,等号成立。
Ⅱ、向量形式的柯西不等式:
模型:如果是两个向量,那么,当且仅当是零向量,或存在实数,使时,等号成立。
Ⅲ、三角形式的柯西不等式:
模型:如果,那么。
Ⅳ、一般形式的柯西不等式:
模型:设非零实数组及实数组,则
,
当且仅当时,等号成立。
③排序不等式:
模型:设有两组数;满足
,
。
则有
(反序和)
(乱序和)
(同序和)。
④贝努利不等式:
Ⅰ、贝努利不等式:
模型:设,则有。
Ⅱ、贝努利不等式的一般形式:
模型:如果,那么当时,有;当,或时,;上述当且仅当时,等号成立。
①利用重要不等式可以求最值,可以证明不等式或解决实际问题,无论如何都要理解重要不等式的内涵,重在“构造”,才能达到运用重要不等式的目的。
②利用重要不等式证明不等式,不等式的证明方法不可缺少,常用的比较法、分析法、综合法、放缩法、换元法、反证法等,都要理解其特点,才能灵活应用。
二、案例分析
证明:(证法1-比较法)
∵
http://pic1.up.91img.com//eduupload/question//14/237f7bad-68ef-4fb2-b160-3cb18198cfd1/2/picture//237f7bad-68ef-4fb2-b160-3cb18198cfd1.004.png
http://pic1.up.91img.com//eduupload/question//14/237f7bad-68ef-4fb2-b160-3cb18198cfd1/2/picture//237f7bad-68ef-4fb2-b160-3cb18198cfd1.005.png
,
又实数http://pic1.up.91img.com//eduupload/question//14/237f7bad-68ef-4fb2-b160-3cb18198cfd1/2/picture//237f7bad-68ef-4fb2-b160-3cb18198cfd1.006.png,
∴ http://pic1.up.91img.com//eduupload/question//14/237f7bad-68ef-4fb2-b160-3cb18198cfd1/2/picture//237f7bad-68ef-4fb2-b160-3cb18198cfd1.007.png
,且
http://pic1.up.91img.com//eduupload/question//14/237f7bad-68ef-4fb2-b160-3cb18198cfd1/2/picture//237f7bad-68ef-4fb2-b160-3cb18198cfd1.008.png
,
∴ http://pic1.up.91img.com//eduupload/question//14/237f7bad-68ef-4fb2-b160-3cb18198cfd1/2/picture//237f7bad-68ef-4fb2-b160-3cb18198cfd1.009.png
∴http://pic1.up.91img.com//eduupload/question//14/237f7bad-68ef-4fb2-b160-3cb18198cfd1/2/picture//237f7bad-68ef-4fb2-b160-3cb18198cfd1.002.png。
(证法2-比较法)∵实数http://pic1.up.91img.com//eduupload/question//14/237f7bad-68ef-4fb2-b160-3cb18198cfd1/2/picture//237f7bad-68ef-4fb2-b160-3cb18198cfd1.006.png,作差得
http://pic1.up.91img.com//eduupload/question//14/237f7bad-68ef-4fb2-b160-3cb18198cfd1/2/picture//237f7bad-68ef-4fb2-b160-3cb18198cfd1.003.png
http://pic1.up.91img.com//eduupload/question//14/237f7bad-68ef-4fb2-b160-3cb18198cfd1/2/picture//237f7bad-68ef-4fb2-b160-3cb18198cfd1.004.png
。
当http://pic1.up.91img.com//eduupload/question//14/237f7bad-68ef-4fb2-b160-3cb18198cfd1/2/picture//237f7bad-68ef-4fb2-b160-3cb18198cfd1.014.png;
当http://pic1.up.91img.com//eduupload/question//14/237f7bad-68ef-4fb2-b160-3cb18198cfd1/2/picture//237f7bad-68ef-4fb2-b160-3cb18198cfd1.018.png。
∴http://pic1.up.91img.com//eduupload/question//14/237f7bad-68ef-4fb2-b160-3cb18198cfd1/2/picture//237f7bad-68ef-4fb2-b160-3cb18198cfd1.002.png。
(证法3-分析法)要证 http://pic1.up.91img.com//eduupload/question//14/237f7bad-68ef-4fb2-b160-3cb18198cfd1/2/picture//237f7bad-68ef-4fb2-b160-3cb18198cfd1.002.png
,
即证
只要证
若,则
,
,于是
,所以http://pic1.up.91img.com//eduupload/question//14/237f7bad-68ef-4fb2-b160-3cb18198cfd1/2/picture//237f7bad-68ef-4fb2-b160-3cb18198cfd1.020.png成立;
若http://pic1.up.91img.com//eduupload/question//14/237f7bad-68ef-4fb2-b160-3cb18198cfd1/2/picture//237f7bad-68ef-4fb2-b160-3cb18198cfd1.029.png成立;
也就是非负实数无论大小如何,不等式http://pic1.up.91img.com//eduupload/question//14/237f7bad-68ef-4fb2-b160-3cb18198cfd1/2/picture//237f7bad-68ef-4fb2-b160-3cb18198cfd1.020.png都成立,
所以不等式 http://pic1.up.91img.com//eduupload/question//14/237f7bad-68ef-4fb2-b160-3cb18198cfd1/2/picture//237f7bad-68ef-4fb2-b160-3cb18198cfd1.002.png
成立。
案例2:(2010辽宁·理)已知均为正数,证明:,并确定为何值时,等号成立。
分析:设计二元或三元的平均值不等式证明,如http://pic1.up.91img.com//eduupload/question//67/8eb3b5bf-0e7f-4e70-b800-f0bf6e7d2968/2/picture//8eb3b5bf-0e7f-4e70-b800-f0bf6e7d2968.009.png,当且仅当两个元或三个元相等时,等号成立。如果多次地设计应用平均值不等式,那么每一次的等号成立的条件都必须具备。
证明:(证法1-综合法)∵http://pic1.up.91img.com//eduupload/question//67/8eb3b5bf-0e7f-4e70-b800-f0bf6e7d2968/2/picture//8eb3b5bf-0e7f-4e70-b800-f0bf6e7d2968.001.png均为正数,由平均值不等式得
∴ (当且仅当http://pic1.up.91img.com//eduupload/question//67/8eb3b5bf-0e7f-4e70-b800-f0bf6e7d2968/2/picture//8eb3b5bf-0e7f-4e70-b800-f0bf6e7d2968.010.png时,等号成立)。
∴
(当且仅当http://pic1.up.91img.com//eduupload/question//67/8eb3b5bf-0e7f-4e70-b800-f0bf6e7d2968/2/picture//8eb3b5bf-0e7f-4e70-b800-f0bf6e7d2968.014.png时,等号成立)。
当且仅当http://pic1.up.91img.com//eduupload/question//67/8eb3b5bf-0e7f-4e70-b800-f0bf6e7d2968/2/picture//8eb3b5bf-0e7f-4e70-b800-f0bf6e7d2968.010.png,且http://pic1.up.91img.com//eduupload/question//67/8eb3b5bf-0e7f-4e70-b800-f0bf6e7d2968/2/picture//8eb3b5bf-0e7f-4e70-b800-f0bf6e7d2968.014.png时,等号成立。即当且仅当时,原不等式等号成立。
(证法2-综合法)∵http://pic1.up.91img.com//eduupload/question//67/8eb3b5bf-0e7f-4e70-b800-f0bf6e7d2968/2/picture//8eb3b5bf-0e7f-4e70-b800-f0bf6e7d2968.001.png均为正数,由基本不等式得
http://pic1.up.91img.com//eduupload/question//67/8eb3b5bf-0e7f-4e70-b800-f0bf6e7d2968/2/picture//8eb3b5bf-0e7f-4e70-b800-f0bf6e7d2968.006.png
,http://pic1.up.91img.com//eduupload/question//67/8eb3b5bf-0e7f-4e70-b800-f0bf6e7d2968/2/picture//8eb3b5bf-0e7f-4e70-b800-f0bf6e7d2968.008.png,
∴ (当且仅当http://pic1.up.91img.com//eduupload/question//67/8eb3b5bf-0e7f-4e70-b800-f0bf6e7d2968/2/picture//8eb3b5bf-0e7f-4e70-b800-f0bf6e7d2968.010.png时,等de号成立)
同理 http://pic1.up.91img.com//eduupload/question//67/8eb3b5bf-0e7f-4e70-b800-f0bf6e7d2968/2/picture//8eb3b5bf-0e7f-4e70-b800-f0bf6e7d2968.016.png
(当且仅当http://pic1.up.91img.com//eduupload/question//67/8eb3b5bf-0e7f-4e70-b800-f0bf6e7d2968/2/picture//8eb3b5bf-0e7f-4e70-b800-f0bf6e7d2968.010.png时,等号成立)
∴
所以原不等式成立。当且仅当http://pic1.up.91img.com//eduupload/question//67/8eb3b5bf-0e7f-4e70-b800-f0bf6e7d2968/2/picture//8eb3b5bf-0e7f-4e70-b800-f0bf6e7d2968.010.png,且时,即当且仅当
时,原不等式的等号成立。
案例3:已知,求证:。
分析:采用综合法证明,可以利用分析法“执果索因”,探得由基本不等式http://pic1.up.91img.com//eduupload/question//87/6ed593e1-66a7-4817-adcb-931874acc7fe/2/picture//6ed593e1-66a7-4817-adcb-931874acc7fe.003.png,
http://pic1.up.91img.com//eduupload/question//87/6ed593e1-66a7-4817-adcb-931874acc7fe/2/picture//6ed593e1-66a7-4817-adcb-931874acc7fe.004.png
入手证明;可以设计柯西不等式证明,即由
http://pic1.up.91img.com//eduupload/question//87/6ed593e1-66a7-4817-adcb-931874acc7fe/2/picture//6ed593e1-66a7-4817-adcb-931874acc7fe.005.png
切入证明。显然,选择综合法,“因”的重要不等式的设计十分关键,除了应用分析法探路外,还要不断积累重要不等式应用的设计经验。
证明:(证法1-综合法) ∵http://pic1.up.91img.com//eduupload/question//87/6ed593e1-66a7-4817-adcb-931874acc7fe/2/picture//6ed593e1-66a7-4817-adcb-931874acc7fe.006.png均为正数,由利用基本不等式,由分析法探得
http://pic1.up.91img.com//eduupload/question//87/6ed593e1-66a7-4817-adcb-931874acc7fe/2/picture//6ed593e1-66a7-4817-adcb-931874acc7fe.007.png
,
∴
即
∴
∴
(证法2-综合法)∵http://pic1.up.91img.com//eduupload/question//87/6ed593e1-66a7-4817-adcb-931874acc7fe/2/picture//6ed593e1-66a7-4817-adcb-931874acc7fe.006.png均为正数,由由柯西不等式得
http://pic1.up.91img.com//eduupload/question//87/6ed593e1-66a7-4817-adcb-931874acc7fe/2/picture//6ed593e1-66a7-4817-adcb-931874acc7fe.005.png
,
即
∴
∴
化简得 http://pic1.up.91img.com//eduupload/question//87/6ed593e1-66a7-4817-adcb-931874acc7fe/2/picture//6ed593e1-66a7-4817-adcb-931874acc7fe.015.png
。
案例4:设,求证:, ,不可能同时大于。
分析:要求证明“不可能同时大于http://pic1.up.91img.com//eduupload/question//45/9ac2e646-007d-4037-87fa-0eb81cae835e/2/picture//9ac2e646-007d-4037-87fa-0eb81cae835e.005.png”,显然用反证法证明比较好。根据反证法证明
“反设、归缪、存真” 的程序,假设http://pic1.up.91img.com//eduupload/question//45/9ac2e646-007d-4037-87fa-0eb81cae835e/2/picture//9ac2e646-007d-4037-87fa-0eb81cae835e.002.png,http://pic1.up.91img.com//eduupload/question//45/9ac2e646-007d-4037-87fa-0eb81cae835e/2/picture//9ac2e646-007d-4037-87fa-0eb81cae835e.003.png,同时大于http://pic1.up.91img.com//eduupload/question//45/9ac2e646-007d-4037-87fa-0eb81cae835e/2/picture//9ac2e646-007d-4037-87fa-0eb81cae835e.005.png,利用基本不等式
推出矛盾,从而得出结论正确。
证明:假设http://pic1.up.91img.com//eduupload/question//45/9ac2e646-007d-4037-87fa-0eb81cae835e/2/picture//9ac2e646-007d-4037-87fa-0eb81cae835e.002.png,http://pic1.up.91img.com//eduupload/question//45/9ac2e646-007d-4037-87fa-0eb81cae835e/2/picture//9ac2e646-007d-4037-87fa-0eb81cae835e.003.png,同时大于http://pic1.up.91img.com//eduupload/question//45/9ac2e646-007d-4037-87fa-0eb81cae835e/2/picture//9ac2e646-007d-4037-87fa-0eb81cae835e.005.png,即
http://pic1.up.91img.com//eduupload/question//45/9ac2e646-007d-4037-87fa-0eb81cae835e/2/picture//9ac2e646-007d-4037-87fa-0eb81cae835e.007.png
, http://pic1.up.91img.com//eduupload/question//45/9ac2e646-007d-4037-87fa-0eb81cae835e/2/picture//9ac2e646-007d-4037-87fa-0eb81cae835e.008.png
,http://pic1.up.91img.com//eduupload/question//45/9ac2e646-007d-4037-87fa-0eb81cae835e/2/picture//9ac2e646-007d-4037-87fa-0eb81cae835e.009.png。
那么三个不等式相乘得
http://pic1.up.91img.com//eduupload/question//45/9ac2e646-007d-4037-87fa-0eb81cae835e/2/picture//9ac2e646-007d-4037-87fa-0eb81cae835e.010.png
又∵http://pic1.up.91img.com//eduupload/question//45/9ac2e646-007d-4037-87fa-0eb81cae835e/2/picture//9ac2e646-007d-4037-87fa-0eb81cae835e.001.png,
∴ http://pic1.up.91img.com//eduupload/question//45/9ac2e646-007d-4037-87fa-0eb81cae835e/2/picture//9ac2e646-007d-4037-87fa-0eb81cae835e.011.png
,
同理
那么以上三式相乘得
http://pic1.up.91img.com//eduupload/question//45/9ac2e646-007d-4037-87fa-0eb81cae835e/2/picture//9ac2e646-007d-4037-87fa-0eb81cae835e.014.png
。 与①矛盾。
所以假设错误,原结论成立,即http://pic1.up.91img.com//eduupload/question//45/9ac2e646-007d-4037-87fa-0eb81cae835e/2/picture//9ac2e646-007d-4037-87fa-0eb81cae835e.002.png,
http://pic1.up.91img.com//eduupload/question//45/9ac2e646-007d-4037-87fa-0eb81cae835e/2/picture//9ac2e646-007d-4037-87fa-0eb81cae835e.003.png
,不可能同时大于http://pic1.up.91img.com//eduupload/question//45/9ac2e646-007d-4037-87fa-0eb81cae835e/2/picture//9ac2e646-007d-4037-87fa-0eb81cae835e.005.png。
案例5:已知为正数,求证:。
分析:对于轮换对称的不等式,常常可以利用排序不等式证明,可以不妨设“序”,如http://pic1.up.91img.com//eduupload/question//79/f54fb441-aea1-4dab-91ad-9b4562471bfe/2/picture//f54fb441-aea1-4dab-91ad-9b4562471bfe.003.png,于是产生所需的“序”
http://pic1.up.91img.com//eduupload/question//79/f54fb441-aea1-4dab-91ad-9b4562471bfe/2/picture//f54fb441-aea1-4dab-91ad-9b4562471bfe.004.png
,http://pic1.up.91img.com//eduupload/question//79/f54fb441-aea1-4dab-91ad-9b4562471bfe/2/picture//f54fb441-aea1-4dab-91ad-9b4562471bfe.007.png,
…,从而证得结论。当然,如果直接设计柯西不等式
http://pic1.up.91img.com//eduupload/question//79/f54fb441-aea1-4dab-91ad-9b4562471bfe/2/picture//f54fb441-aea1-4dab-91ad-9b4562471bfe.008.png
http://pic1.up.91img.com//eduupload/question//79/f54fb441-aea1-4dab-91ad-9b4562471bfe/2/picture//f54fb441-aea1-4dab-91ad-9b4562471bfe.009.png
,
那么很快水到渠成。本案例再次说明,重要不等式的设计或构建十分重要,不同的设计或构建常常产生不同的效果,务必深思熟虑,多方权衡。
证明:(证法1-综合法,利用排序不等式、柯西不等式证明)
∵http://pic1.up.91img.com//eduupload/question//79/f54fb441-aea1-4dab-91ad-9b4562471bfe/2/picture//f54fb441-aea1-4dab-91ad-9b4562471bfe.001.png为正数,由不等式的对称性,不妨设http://pic1.up.91img.com//eduupload/question//79/f54fb441-aea1-4dab-91ad-9b4562471bfe/2/picture//f54fb441-aea1-4dab-91ad-9b4562471bfe.003.png,则
http://pic1.up.91img.com//eduupload/question//79/f54fb441-aea1-4dab-91ad-9b4562471bfe/2/picture//f54fb441-aea1-4dab-91ad-9b4562471bfe.004.png
, http://pic1.up.91img.com//eduupload/question//79/f54fb441-aea1-4dab-91ad-9b4562471bfe/2/picture//f54fb441-aea1-4dab-91ad-9b4562471bfe.010.png
。
∴
由排序不等式得
http://pic1.up.91img.com//eduupload/question//79/f54fb441-aea1-4dab-91ad-9b4562471bfe/2/picture//f54fb441-aea1-4dab-91ad-9b4562471bfe.012.png
(乱序和不大于顺序和)。
两式相加得
http://pic1.up.91img.com//eduupload/question//79/f54fb441-aea1-4dab-91ad-9b4562471bfe/2/picture//f54fb441-aea1-4dab-91ad-9b4562471bfe.006.png
。
由柯西不等式
http://pic1.up.91img.com//eduupload/question//79/f54fb441-aea1-4dab-91ad-9b4562471bfe/2/picture//f54fb441-aea1-4dab-91ad-9b4562471bfe.013.png
,即http://pic1.up.91img.com//eduupload/question//79/f54fb441-aea1-4dab-91ad-9b4562471bfe/2/picture//f54fb441-aea1-4dab-91ad-9b4562471bfe.014.png。
∴
∴
∴
所以
(证法2-综合法,利用柯西不等式证明)
∵http://pic1.up.91img.com//eduupload/question//79/f54fb441-aea1-4dab-91ad-9b4562471bfe/2/picture//f54fb441-aea1-4dab-91ad-9b4562471bfe.001.png为正数,由柯西不等式
http://pic1.up.91img.com//eduupload/question//79/f54fb441-aea1-4dab-91ad-9b4562471bfe/2/picture//f54fb441-aea1-4dab-91ad-9b4562471bfe.021.png
∴
∵http://pic1.up.91img.com//eduupload/question//79/f54fb441-aea1-4dab-91ad-9b4562471bfe/2/picture//f54fb441-aea1-4dab-91ad-9b4562471bfe.023.png,
∴
评注:
上述两种证明方法都是综合法,但构造的重要不等式不同,前者构造排序不等式,后者构造柯西不等式,显然后者比较简捷,所以在证明不等式过程中,除了方法的选择外,关键的是如何构造重要不等式,构造得当,事倍功半,效果更好。
了解更多,请点击http://edu.591up.com/Edu/Class/courseList.aspx?classId=218