《合并同类项》教学设计及反思 ——宋玉国
(2013-05-30 14:57:48)《合并同类项》教学设计及反思
教材分析
本节课是学生在学习了用字母表示数、单项式、多项式以及有理数的基础上,对同类项合并、探索、研究的一个课程。合并同类项是本章的一个重点,其法则的应用是整式加减的基础,也是以后学习解方程、解不等式的基础。另一方面,这节课与前面所学的知识有千丝万缕的联系:合并同类项的法则是建立在数的运算的基础之上;在合并同类项过程中,要不断运用数的运算。即合并同类项是有理数运算的延伸与拓展,是简化数学运算的常用方法,对于解决一些实际问题和进一步学习有着深远的意义。因此,这节课具有承上启下的作用。
学情分析
新知识的学习应建立在学生的已有认知发展水平上,因此从学生己有的生活知识经验出发,通过观察、思考、讨论,把几个代数式进行分类,从而引出同类项这个概念,理解同类项的定义以及满足同类项的条件。合并同类项是在 “乘法分配律”基础上的延伸和拓展,合并同类项是式的运算,可类比“乘法分配律”数的运算来学习。通过引导学生类比数的运算来进行式的运算,利用关于数的分配律对式子进行化简,充分体现“数式通性”。让学生体会由数到式、由具体到一般的思想方法,以及体会数学来源于生活,又作用于生活,从而激发学生学习数学的兴趣。
教学重点和难点
重点:同类项的定义;合并同类项
难点:识别同类项;合并同类项
教学过程
一、复习单项式、多项式的概念及有理数的运算律,导入新课
让学生回忆、发言,最 后老师加以补充、巩固。
设计意图:复习相关概念及有理数的运算,为合并同类项打基础。
活动一:观察单项式:3x2y, -4xy2, -3, 5x2y, 2xy2, 5,把其中具有相同特征的项归为一类,你是怎么分类的?
设计意图:知识来源于生活,又服务于生活。分类是日常生活中常见的问题,由分类引出同类项的概念,顺理成章。通过观察、思考、分析、归纳识别同类项的特征,为合并同类项作准备。
“物以类聚,人以群分”,我们常常把具有相同特征的项归为一类。同学们,你们认为上述单项式中哪些项可以归一类?为什么?可分为几类?给出一定的时间,让学生通过观察、思考、交流、归纳得出:3x2y与5x2y可归为一类,-4xy2与2xy2可归为一类,-3与5也可归为一类,共可分为三类。其中3x2y与5x2y中只有系数不同,各自所含的字母相同,都是x、y,并且x的指数都是2,y的指数都是1;-4xy2与2xy2也只有系数不同,各自所含的字母相同,都是x、y,并且x的指数都是1,y的指数都是2。这是同类项的特征:所含字母相同;‚相同字母的指数也分别相同,从而引出同类项概念,引出课题,板书课题:合并同类项。
二、讲授新课
板书:1、同类项的特征:所含字母相同;相同字母的指数也分别相同
2、同类项概念:所含字母相同,相同字母的指数也分别相同的项,叫做同类项;
几个常数项也是同类项。
想一想:1、下列各式中具有上述特征吗?他们是不是同类项?
(1) 10a与20a;
(4) 4abc与4ac;
2、如果3xmy2与4xyn是同类项,则 m
=
注意:★同类项与字母顺序无关;
设计意图:强化同类项的特征,加深对同类项概念的理解,感受收获知识的喜悦。识别同类项是本课的关键,是重点内容之一,是合并同类项的基础和需要。
活动二:乐乐一家去肯德基:爸爸吃2个汉堡包、1个鸡翅,1杯可乐。妈妈吃1个汉堡包、2个鸡翅,1杯可乐。乐乐吃1个汉堡包,1个鸡翅,1杯可乐如果让乐乐去买这些东西,他怎样对服务员说呢?
乐乐说:我买
同学们回答了上面的问题,得出共同结论:现实生活中为了方便,往往要对事物进行分类,同时同一类的东西可以合并在一起。
设计意图:新问题能引起学生的兴趣,激发学生探求新知的欲望,让学生带着问题去探究合并同类项的方法和依据。
探究1:(1)运用有理数的运算定律计算:8n+5n = (8+5)n = 13n
100×2+252×2=(
________
100×(-2)+252×(-2)=
( ________
(2)根据(1)中的方法完成下面的运算,并说说其中的道理。
100t +
252t=(_________)t=
探究2
:填空:(1) 100t-252t=(_____
(2)
3x2+2x2=(__
(3)
3a2b-4a2b=(___
设计意图:让学生在独立完成的基础上,观察、分组讨论, 通过类比数的运算,探究式的运算。让学生体会有理数的运算定律在整式运算中同样适用,并从中找到合并同类项的方法依据。体验探求规律的思想方法,及合作的愉快、成功的喜悦。
板书:
3、合并同类项:把多项中的同类项合并为一项,叫做合并同类项。
4、合并同类项法则:把同类项的系数相加,字母和字母的指数保持不变。
5、合并同类项的依据:乘法分配律
小练习:判断下列合并是否正确,错误的改正
1、5 x2+6
x2=11x4
练习:仿照式子 2a+3a=(2+3 )a = 5a计算
1、
3、
- 2m + 3m =
设计意图:让学生在理解和适当记忆合并同类项法则后,尝试进行两项的合并练习,熟悉法则并对合并时的符号有所把握。
活动三 :用不同记号标出下列各多项式中的同类项,并合并同类项:
(1)
4x2+2x+7+3x-8x2-2
给出一定的时间让学生思考、讨论、计算,最后师生共同完成解题过程
设计意图:做标记是为了让学生做到不重不漏,进一步区分不同的同类项,继而合并同类项,加深对合并同类项方法的理解。
解:(1)
(3)
如果一个多项式中有同类项,那么我们常常要把同类项合并起来,使得结果简化。
练习:(1)a-3m+2a+2m
活动四:提问:在我们合并同类项的过程中,哪一类我们容易出错?谁有好的办法能有效地降低错误?
如a-3m+2a+2m
1、还原成加法:原式= a+(-3m)+2a+2m
2、正在前,负在后:原式= a+2a+2m-3m
3、用生活意义去理解:-3m表示减3m,2m表示加上2m,
设计意图:通过对学生此类问题的错误预设,知道学生在此要出错,让做对的学生介绍其正确方法,能有效的减少错误,并能提高本节的课堂学习效率,同时能调动学生学习的积极性,也能树立学生的自信心。
活动五:当x=-2时,求多项式3x2+4x-2x2-x+x2-3x-1 值
设计意图:通过学生的观察、讨论、比较,最后得出:这类题目是要先合并多项中的同类项,再代数进去求值,这样就可以使得计算简便。
解:3x2+4x-2x2-x+x2-3x-1
三、小结:
1、同类项必备的条件:
2、只有同类项才能合并,不是同类项的不能合并;
3、合并同类项,只合并系数,字母与字母的指数不变;
4、在求代数式的值时,可先合并同类项将代数式化简,
四、作业:课本91页习题3.5第1题全部, 第2题的第(1)小题
板书设计
合并同类项
1、同类项的特征:
(1)所含字母相同。
(2)相同字母的指数分别相同。
3、合并同类项的依据:乘法分配律
4、例题讲解:(1)
4x2+2x+7+3x-8x2-2
5、总结系数异号时的有效降低错误的合并方法:
课后反思: