Latex学习笔记(一:方程大括号、公式对齐)

标签:
latextex无法执行错误命令代码学习笔记文化公式对齐 |
分类: Latex |
2012.03.11 偏微分方程花括号(大括号)的使用方法
完成效果:
http://s10/middle/a3b863dagc00a507438c9&690
代码:
More definitely, the problem
is
\begin{equation}\label{pb1}
\left \{
\begin{array}{rl}
\end{array}
\right.
\end{equation}
注意:
1.两个方程行都加换行符\\
2.对齐的位置&
3.\right后面不要忘记带“.”,否则无法执行
2012.04.21 公式对齐的命令
http://s2/middle/84fde258gbe272f460741&690
That $E$ is lower semi-continuous, hold since $E$ is both convex
and Gateaux-differentiable.
\[\begin{aligned}
E(u)=&\int_\Omega \frac{1}{2} \lambda^2
|Du|^2+\frac{1}{2}ku^2-f(x)udx\\
\geqslant &\int_\Omega \frac{1}{2} \lambda^2
|Du|^2+\frac{1}{2}ku^2dx-\frac{1}{2}\int_\Omega
f(x)^2dx-\frac{1}{2}\int_\Omega u^2dx\\
\geqslant &\int_\Omega \frac{1}{2} \lambda^2
|Du|^2+\frac{1}{2}(k-1)u^2dx-\frac{1}{2}\int_\Omega
f(x)^2dx\\
\geqslant &C_0 \|u\|_{1,2}^2 -C_1,~\forall u \in
M
\end{aligned}\]
where $C_0=\min {\{\frac{1}{2} \lambda^2, \frac{1}{2}(k-1)\}},
C_1=\frac{1}{2}\int_\Omega f(x)^2dx$.