加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

abaqus实体单元和壳单元

(2017-02-27 11:04:07)
分类: ABAQUS

1.实体单元

实体单元可在其任何表面与其他单元连接起来。

C3D:三维单元

CAX:无扭曲轴对称单元,模拟3600的环,用于分析受轴对称载荷作用,具有轴对称几何形状的结构;

CPE:平面应变单元,假定离面应变ε33为零,用力模拟厚结构;

CPS:平面应力单元,假定离面应力σ33为零,用力模拟薄结构;

广义平面应变单元包括附加的推广:离面应变可以随着模型平面内的位置线性变化。这种数学描述特别适合于厚截面的热应力分析。

可以扭曲的轴对称单元:用来模拟初始时为轴对称的几何形状,且能沿对称轴发生扭曲。这些单元对于模拟圆柱形结构,例如轴对称橡胶套管的扭转很有用。

反对称单元的轴对称单元:用来模拟初始为轴对称几何形状的反对称变形。适合于模拟像承受剪切载荷作用的轴对称橡胶支座一类的问题。

如果不需要模拟非常大的应变或进行一个复杂的,改变接触条件的问题,则应采用二次减缩积分单元(CAX8R,CPE8R,CPS8R,C3D20R)

如果存在应力集中,则应在局部采用二次完全积分单元(CAX8,CPE8,CPS8,C3D20等)。 对含有非常大的网格扭曲模拟(大应变分析),采用细网格划分的线性减缩积分单元(CAX4R,CPE4R,CPS4R,C3D8R等)

对接触问题采用线性减缩积分单元或非协调元(CAX4I,CPE4I,CPS4I,

C3D8I)的细网格划分。

如果在模型中采用非协调元应使网格扭曲减至最小。

三维情况应尽可能采用块状单元(六面体)。当几何形状复杂时,完全采用块体单元构造网格会很困难,因此可能有必要采用稧形和四面体单元,但尽量少用,并远离需要精确求解的区域。

一些前处理程序包括网格划分方法,它们可用四面体单元构造任意形状的网格。只要采用二次四面体单元(C3D10),其结果对小位移问题应该是合理的。

小结:

在实体单元中所用的数学公式和积分阶数对分析的精度和花费有显著的影响;

使用完全积分单元,尤其是一阶(线性)单元,容易形成自锁现象,正常情况不用; 一阶减缩积分单元容易出现沙漏现象;充分的单元细化可减小这种问题;

在分析中如有弯曲位移,且采用一阶减缩积分单元时,应在厚度方向至少用4个单元; 沙漏现象在二阶减缩积分单元中较少见,一般问题应考虑应用这些单元;

非协调单元的精度依赖于单元扭曲的量值;

结果的数值精度依赖于所用的网格,应进行网格细化研究以确保该网格对问题提供了唯一的解答。但是应记住使用一个收敛网格不能保证计算结果与问题的实际行为相匹配:它还依赖于模型其他方面的近似化和理想化程度;

通常只在想要得到精确结果的区域细划网格;

ABAQUS具有一些先进特点如子模型,它可以帮助对复杂模拟得到有用的结果。

2.壳单元

可以模拟有一维尺寸(厚度)远小于另外两维尺寸,且垂直于厚度方向的应力可以忽略结构。 一般壳单元:S4R,S3R,SAX1,SAX2,SAX2T。对于薄壳和厚壳问题的应用均有效,且考虑了有限薄膜应变;

薄壳单元:STRI3,STRI35,STRI65,S4R5,S8R5,S9R5,SAXA。强化了基尔霍夫条件,即:垂直于壳中截面的平面保持垂直于中截面;

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有