标签:
杂谈 |
重磅】何小亚等:数学教学原则的反思与重构
2017-10-29
聆听名家教导,
领教高人创见。
沐浴智者才气,
感悟师者睿智。
(深圳高级中学 黄元华 QQ:2603126632)
数学教学原则的反思与重构
华南师范大学数学科学学院(510631)张敏
关键词:数学教学原则,反思,重构,数学现实,数学化,三维目标
1.问题的提出
作为数学教育领域中的核心问题之一,数学教学原则是数学教育研究和数学教育教与学的一个联结纽带,也是数学教育工作者一直致力于解决的重要课题.
数学教学原则是数学教育研究者通过深入研究数学教与学的规律,结合数学本质,总结出的能指导数学教学工作的基本要求,是一线教学工作者贯彻于教学过程的纲领.近三十年来,随着数学教育学科的确立,数学教学原则的研究可谓呈现百家争鸣的状况.从最初的来自于一般教育学教学原则的简单移植,到现在充满数学特色的原则或原则体系的提出,许多学者在这方面做出了很大的努力[1]-[6].但是,这项研究仍没结束,对数学教学原则仍值得进一步思考.
本世纪初,我国颁布了中小学数学课程新标准,对课程目标和教学理论都作出了重大的改革,在新的历史阶段,又有不少学者提出了新的观点:如何小亚(2014)[7]认为:数学教学原则是符合数学学习规律,体现数学教学规律,实现数学教学目标的数学教学工作准则.张红提出新课改背景下的数学教学新原则: 数学双基渗透思想方法的原则;数学知识和数学能力相互促进的原则;特殊性数学能力和一般性数学能力相互交融的原则;数学知识能力和数学情感态度相互协调的原则[8].
当前影响较大的数学教学原则是张奠宙先生提出的四项原则:学习数学化原则;适度形式化原则;问题驱动原则;渗透思想方法原则[9].该原则突出数学学科特征,从数学教学的实际过程的角度进行拟定,是数学教学原则研究的一项有意义的成果.
但是在仔细研读文献[9]中关于该四项原则的内容时,仍感觉有几点困惑:困惑1:什么是数学教学原则,它包括什么内容?困惑2:书中将数学化定义为“数学化,就是学会用数学的观点考察现实,运用数学的方法解决问题”合适吗?困惑3:将形式化的内容界定为“数学的形式化包括“符号化、逻辑化和公理化”三个层面”合适吗?困惑4:所提的“适度形式化原则”在数学教学中如何适度?如何操作?由此提出以下三个研究问题:
2.数学教学原则的反思
2.1 反思之一:“学习数学化原则”到底想说什么?
1.什么是数学化?
其实,Freudenthal所说的数学化(mathematization)是整理现实性的过程,它包括数学家的全部组织活动,比如公理化、形式化(符号化)、图式化、建模,以及数学内部由低级向高级的推动过程[3]p42-50.这里的“现实性(reality)”是指真实世界(real-world)和
数学世界(math-word)的总和,而不是望文生义简单地理解为真实世界(现实世界).公理化(axiomatization)是指从少数不加定义的原始概念和不加证明的公理出发,运用逻辑推理规则把一门学科建立成为演绎系统的过程.形式化(formalization)是指“用日益有效的符号对语言的整理、修正和转化的过程.”
2.什么是数学化的学习?
3.数学建模与数学化是什么关系?数学化能力是什么?
2.2 反思之二:什么是适度形式化原则?
文献[9]对数学的形式化的说明是:数学的形式化包括“符号化、逻辑化和公理化”三个层面[9]p85-86.这与Freudenthal的定义相差太远,上文已解释形式化是指用日益有效的符号对语言的整理、修正和转化的过程[3] P43.
在文献[9]第85页“2.适度形式化原则”部分,第1段讲了形式化的作用;第3、4、5段全部讲的是符号化的问题,在最后一段讲了形式化不能走极端问题,也就是说,数学教学应该追求符号的理解而不能只会演算操作.所以,这一条原则应该是理解符号的原则.另外, 通篇没有谈到如何“适度”的问题?缺乏实践操作性,一线教师难以落实!
2.3 反思之三:什么是问题驱动原则?
2.4
2.5 反思后的几点结论
1.最有价值的“数学现实原则”去掉了
2.“学习数学化原则”值得商榷
3.“适度形式化原则”的提法太虚,缺乏实操性
其次,作者将形式化解释为“用一套表意的数学符号,去表达数学对象的结构和规律,从而把对具体数学对象的研究转化为对符号的研究,并生成演绎的体系.这就是数学的形式化.”这一界定表明,形式化就是符号化.
第三,该原则的最后一段说明:数学教学应该追求符号的理解,不能只会演算操作.
因此,建议把适度形式化原则改为符号理解的原则.
4.“渗透数学思想方法原则”并不新,厚此薄彼
3.数学教学原则的重构
数学教学原则的确立本来就是一个不断发展的过程,在每个时期所提出的原则都凝聚着数学教育家们的无数智慧.张奠宙先生所提出的四项数学教学原则为在新时期下研究数学教学原则指出了新的方向,但是我们对其深入的内在含义及可操作性还存在一些困惑,四项原则从整个体系来说还存在一些不够完善的地方。因此,依据
3.1 数学现实原则
正如前文所述,这是数学教学的基础性原则.根据Freudenthal的观点,数学源于现实,寓于现实,并用于现实.数学教学首先应以学生现有的“数学现实”作为出发点,并能预期学生在接受教学后所应当拥有的新的“数学现实”.2011年版的《义务教育数学课程标准》的课程基本理念中也强调,教师教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教[13].这也是与数学现实原则相辅相成的.
3.2 数学化原则
这是数学教学的核心性原则.数学化的学习就是学习数学化的过程,即学习如何进行公理化、形式化(符号化)、图式化、建模,以及学习在数学内部由低级向高级的发展过程.所有的数学学习都应当是数学化的过程.数学化的对象是数学现实,学生从原有“数学现实”水平到达新的“数学现实”水平之间所经历的过程就是数学化的过程.由于学生间的数学现实不同,数学化的层次也有所不同.通过水平数学化,学生可以把数学学习从生活世界引入到符号世界.更深层次,通过垂直数学化学生可以在符号世界中构造自己的数学体系.数学学习最终的目的不应该是仅让学生拥有一个充满数学知识的头脑,而更应该是让学生拥有一个具备的数学认知能力的头脑.而数学化正是实现这种目标的有效途径,通过这两种水平的数学化过程,学生在数学学习中可以亲身感知数学发展的过程,对培养学生的创造性思维能力有莫大的益处.
数学是一门抽象的学科,具体与抽象相结合的教学方式是数学教育工作者们一直以来所推崇的教学模式.数学化方法正是运用这种教学方式的有效工具.当学生的能力还达不到在抽象的符号世界中理解数学概念及原理时,可以先从具体的生活世界出发,通过水平数学化的方法,引入至抽象的符号世界中,比如情景教学就是这种数学化方法的很好的体现.
3.3 符号运算与符号理解相统一原则
这是对文献[9]中的“适度形式化原则”的修正.我们不否认形式化是数学的特征,而这种形式化最终却是用符号进行表达.数学是用数字、字母和运算符号,依照逻辑联结,描述数量关系和空间形式的知识体系.可以说,数学的世界就是一个符号化的世界[14].数学离不开符号,数学处处要用到符号.英国著名数学家罗素(B.Russell,1872-1970)说过:“什么是数学?
这里要注意符号表达的一个严谨性问题.严谨性是数学的一项基本特点.任何一个数学结论都应当以严谨正确的语言进行叙述.但是,在数学教学中,对这种严谨性的要求在不同的学习阶段时可以适当放宽.Freudenthal曾经说过:严谨性是有层次的,每一个题材存在着适合它的严谨性层次;学生应该通过这些层次而获得他们的严谨性.数学家也应根据不同的严谨性层次进行运算[15].比如,对于极限的定义,中学教材中并没有采用数学分析中所采用的严谨的“”定义法,而采用学生易于理解的以“无限趋向于”这样的术语来定义,从严谨性的角度来看,后者当然不及前者,但却符合中学生学习的年龄特点.若硬是采用“”定义法,让学生死记硬背概念,而不理解这些符号所代表的含义,则并不是有意义的数学学习.
因此,符号的合理正确的运用,固然能使数学体系更加系统,简明和严谨.但是,我们也要重视学生在不同的学习阶段对符号的理解,采用适合于学生程度的符号体系进行教学.若不理解符号所表达的数学内容的真正内涵,则严谨的符号表达对学生来说也只是一堆枯燥无味、毫无意义的陈述.故在符号教学中我们强调符号表达和符号理解两者不能厚此薄彼,既强调符号的正确运用和表达,也强调在数学背景下的符号理解,即符号运算和符号理解相统一.
符号运算与符号理解相统一原则是数学教学的基本性原则.
3.4 演绎推理与合情推理相统一原则
毋庸置疑,数学是培养人的推理能力的一门有用的学科.但长久以来,人们一直在数学教学中过分关注演绎推理能力的培养,认为这种推理能力才是数学严谨性的最好诠译.
数学确实需要演绎推理,但从科学发现的角度来说,更需要合情推理.合情推理是符合情理(经验)但并不具有必然性的推理.大多数数学概念的提出和数学定理的发现,先是通过合情推理的方式提出假说,然后经过演绎推理论证才得出.由于我们过去太注重形式运演的演绎推理,忽视了科学发现的合情推理,所以我们的学生习惯于解答别人给的现成问题,学得越多,就越来越不会发现、提出问题和解决真正的问题[16].
我国数学教育貌似很强,不管是国际学生评估项目PISA测试,还是国际奥林匹克数学竞赛中,我国学生在国际上的排名都是遥遥领先.但是我国能称得上国际上的顶级数学家的却极其匮乏,各门自然学科的诺贝尔奖得主也仍未出现中国大陆学者的身影.其中一个很重要的原因,我们的教育缺乏对学生的创新思维的培养,只教会学生怎么解题,而且是解有固定答案的现成的题,而缺乏发现问题和提出问题的能力.
要改变这种状况,我们应当把合情推理的教学摆在一个极其重要的层面上.
3.5 数学三维目标相统一原则
在这三维目标中,知识与技能指的是数学基础知识和数学基本技能.是数学教学的基本要求.
过程与方法是指通过数学学习过程,把握数学思想方法、形成数学能力,发展数学思维和数学意识,提高问题解决能力[18].学生通过亲身经历和体验各种数学活动,参与数学的观察、猜测、验证、推理与交流、抽象与概括、符号表示、运算求解、数据处理,还有反思与建构等活动方式,从而达到对数学知识的意会、理解.通过这种活动经验的积累,感悟数学思想方法的运用,学生的思维能力,创新能力以及解决问题的能力获得提高.
情感态度与价值观中,情感是指在数学活动过程中的比较稳定的情绪体验.数学态度是指喜欢与否、看法立场,包括数学学科的态度(数学信念),对数学的兴趣,对数学具体内容的态度.价值观则包括宏观的价值观和数学审美观.情感态度价值观属于内隐的心理结构,不是明确知识,而是意会知识,无法通过传授而直接获得,必须通过学生的过程学习间接获得[18]
数学三维目标相统一的原则是数学教育的关键性原则,是追求数学素养提高的教学原则,是解决“大众不喜欢数学”[19]问题的根本性原则.
在数学教学中,广大一线教师应以学生的数学现实为出发点,通过数学化的方法引导学生构造自己的数学世界.在数学化的过程中,培养学生良好的符号运算和符号理解能力,在发展演绎推理能力的同时,不能忽视合情推理能力的提高,而数学三维目标的实现应自始自终贯穿于整个数学教学过程当中.
参考文献:
[1]
B.A
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10] Freudenthal H. Revisiting Mathematics Education:China Lectures[M]. Dordrecht, The Netherlands:Kluwer, 1991
[11]
http://html.study.teacheredu.cn/el/proj_421/article/37004/1281521.htm?ms=1416930106808
[12]
[13]
[14]
[15]弗莱登塔尔 著.
[16]
[17]
[18]
[19]Ruben hersh,Vera John-Steiner著,杨昔阳译.爱+恨
数学[M].北京:商务印书馆,2013:336.
——此文发表于《中学数学研究》(广州),2017年第10期(上),第0-5页.
2008、2009、2015、2016年分别指导本科生林佳佳、黄泽君、张琳琳蔡晓纯夺得教育部第一、二、六、七届东芝杯师范生教学技能大赛数学组冠军。
2013、2016年分别指导本科生朱桂静、黄健获“第一、四届全国师范院校师范生教学技能竞赛”数学组冠军。
2010年被评为全国教育硕士优秀教师。
2010、2012、2015年分别指导研究生杨志龙、胡彩英、谭团花连获第二、三、四届全国教育硕士优秀论文。
2012年所主编的《中学数学教学设计》一书入选教育部“十二五”普通高等教育本科国家级规划教材。
参与教育部重大课题“我国基础教育和高等教育阶段学生核心素养总体框架研究”项目研究,承担教育部哲学社会科学研究重大课题攻关项目“我国高中阶段学生核心素养的模型及指标体系研究”(13JZDW009),为新的国家课程标准的制定做顶层设计。