欧氏距离(Euclidian distance,欧几里得(德)距离)定义(转)

欧氏距离定义: 欧氏距离( Euclidean distance)也称欧几里得距离是一个通常采用的距离定义,它是在m维空间中两个点之间的真实距离。
在二维和三维空间中的欧式距离的就是两点之间的距离,二维的公式是
d =
sqrt((x1-x2)^+(y1-y2)^)
三维的公式是
d=sqrt(x1-x2)^+(y1-y2)^+(z1-z2)^)
推广到n维空间,欧式距离的公式是
d=sqrt( ∑(xi1-xi2)^ )
这里i=1,2..n
xi1表示第一个点的第i维坐标,xi2表示第二个点的第i维坐标
n维欧氏空间是一个点集,它的每个点可以表示为(x(1),x(2),...x(n)),其中x(i)(i=1,2...n)是实数,称为x的第i个坐标,两个点x和y=(y(1),y(2)...y(n))之间的距离d(x,y)定义为上面的公式.
欧氏距离看作信号的相似程度。 距离越近就越相似,就越容易相互干扰,误码率就越高。
========
所谓欧氏距离变换,是指对于一张二值图像(再次我们假定白色为前景色,黑色为背景色),将前景中的像素的值转化为该点到达最近的背景点的距离。
欧氏距离变换在数字图像处理中的应用范围很广泛,尤其对于图像的骨架提取,是一个很好的参照。
所谓欧氏距离变换,是指对于一张二值图像(再次我们假定白色为前景色,黑色为背景色),将前景中的像素的值转化为该点到达最近的背景点的距离。
欧氏距离变换在数字图像处理中的应用范围很广泛,尤其对于图像的骨架提取,是一个很好的参照。
========
欧氏距离:(∑(Xi-Yi)2)1/2,即两项间的差是每个变量值差的平方和再平方根,目的是计算其间的整体距离即不相似性。
我们熟悉的欧氏距离虽然很有用,但也有明显的缺点。它将样品的不同属性(即各指标或各变量)之间的差别等同看待,这一点有时不能满足实际要求。例如,在教育研究中,经常遇到对人的分析和判别,个体的不同属性对于区分个体有着不同的重要性。因此,有时需要采用不同的距离函数。
如果用dij表示第i个样品和第j个样品之间的距离,那么对一切i,j和k,dij应该满足如下四个条件:
①当且仅当i=j时,dij=0
显然,欧氏距离满足以上四个条件。满足以上条件的函数有多种,本节将要用到的马氏距离也是其中的一种。
采用巴氏距离特征选择的迭代算法,可以获得最小错误率上界。当特征维数高时,为了减少巴氏距离特征选择计算时间,对样本先进行K-L变换,将特征降低到中间维数。然后进行巴氏距离特征选择,降低到结果的维数。用基于MNIST手写体数字库的试验表明,该文方法比单纯用巴氏距离特征选择计算时间大大减少,并比主分量方法(即单纯使用K-L变换)特征选择的错误率小得多
=========
In mathematics, the
Definition
The
-
http://upload.wikimedia.org/math/c/3/3/c33da5ebd1b4f96785f4765e06d4f1ee.pngdistance,欧几里得(德)距离)定义(转)" TITLE="欧氏距离(Euclidian
distance,欧几里得(德)距离)定义(转)" /> (1)
The Euclidean norm measures the distance of a point to the origin of Euclidean space:
- http://upload.wikimedia.org/math/4/5/6/456fbff3b215c3ca3f39ebb8663e518c.pngdistance,欧几里得(德)距离)定义(转)" TITLE="欧氏距离(Euclidian
distance,欧几里得(德)距离)定义(转)" />
where the last equation involves the dot product. This is the
length of
-
http://upload.wikimedia.org/math/e/0/2/e0206298710b39b9acfab56c0b39f548.pngdistance,欧几里得(德)距离)定义(转)" TITLE="欧氏距离(Euclidian
distance,欧几里得(德)距离)定义(转)" /> (2)
[edit] Special
cases
In one dimension, the distance between two points on the real line
is the absolute value of their numerical difference. Thus
if
- http://upload.wikimedia.org/math/6/f/3/6f381806a41a0e96f98ae4d86519b4bb.pngdistance,欧几里得(德)距离)定义(转)" TITLE="欧氏距离(Euclidian
distance,欧几里得(德)距离)定义(转)" />
In one dimension, there is a single homogeneous, translation-invariant metric (in other words, a distance that is induced by a norm), up to a scale factor of length, which is the Euclidean distance. In higher dimensions there are other possible norms.
In the Euclidean plane,
if
- http://upload.wikimedia.org/math/2/7/1/27187d79303f30595f6ea88c89136aa3.pngdistance,欧几里得(德)距离)定义(转)" TITLE="欧氏距离(Euclidian
distance,欧几里得(德)距离)定义(转)" />
Alternatively, it follows from (2)
that if the polar coordinates of the
point
- http://upload.wikimedia.org/math/3/9/9/3998f7a989e2a0475a913bf26387f9e2.pngdistance,欧几里得(德)距离)定义(转)" TITLE="欧氏距离(Euclidian
distance,欧几里得(德)距离)定义(转)" />
In three-dimensional Euclidean space, the distance is
- http://upload.wikimedia.org/math/4/9/8/498936e0770b4522dba61fe2572f4b23.pngdistance,欧几里得(德)距离)定义(转)" TITLE="欧氏距离(Euclidian
distance,欧几里得(德)距离)定义(转)" />
and so on.
From:http://en.wikipedia.org/wiki/Euclidean_distance