【材料力学】屈服强度和塑性变形

标签:
屈服强度塑性变形再结晶回复 |
分类: 机械 |
1.屈服强度
l
l
l
l
http://s12/mw690/002UB2R1zy778farEev8b&690
2.塑性变形
l
塑性变形引起位错增殖,位错密度增加,不同方向的位错发生交割,位错的运动受到阻碍,使金属产生加工硬化。加工硬化能提高金属的硬度、强度和变形抗力,同时降低塑性,使以后的冷态变形困难。
l
塑性变形在金属体内的分布是不均匀的,所以外力去除后,各部分的弹性恢复也不会完全一样,这就使金属体内各部分之间产生相互平衡的内应力,即残余应力。
残余应力降低零件的尺寸稳定性,增大应力腐蚀的倾向。
l
金属经冷态塑性变形后,晶粒内部出现滑移带或孪晶带。各晶粒还沿变形方向伸长和扭曲。当变形量很大(如70%或更大)而且是沿着一个方向时,晶粒内原子排列的位向趋向一致,同时金属内部存在的夹杂物也被沿变形方向拉长形成纤维组织,使金属产生各向异性。沿变形方向的强度、塑性和韧性都比横向的高。
当金属在热态下变形,由于发生了再结晶,晶粒的取向会不同程度地偏离变形方向,但夹杂物拉长形成的纤维方向不变,金属仍有各向异性。
再结晶
经过冷变形的金属,如加热到一定温度并保持一定的时间,原子的激活能增加到足够的活动力时,便会出现新的晶核,并成长为新的晶粒,这种现象称为再结晶。经过再结晶处理后,冷变形引起的晶粒畸变以及由此引起的加工硬化、残余应力等都会完全消除。
回复
冷变形后的金属,当加热到稍低于再结晶温度时,通过原子的扩散会减少晶体的缺陷,降低晶体的畸变能,从而减小内应力;但是不出现新的晶粒,金属仍保留加工硬化和各向异性,这就是金的回复。这样的热处理称为去应力退火。