欧几里得的几何原本
(2014-10-01 07:31:31)
标签:
军事 |
分类: 软硬件维护及生活 |
欧几里得几何指按照古希腊数学家欧几里得的《几何原本》构造的几何学。
欧几里得几何有时单指平面上的几何,即平面几何。本文主要描述平面几何。三维空间的欧几里得几何通常叫做立体几何。
高维的情形请参看欧几里得空间。
1、基本信息
欧几里得几何简称“欧氏几何”,是几何学的一门分科。数学上,欧几里得几何是平面和三维空间中常见的几何,基于点线面假设。数学家也用这一术语表示具有相似性质的高维几何。
欧氏几何源于公元前3世纪。古希腊数学家欧几里德把人们公认的一些几何知识作为定义和公理(公设),在此基础上研究图形的性质,推导出一系列定理,组成演绎体系,写出《几何原本》,形成了欧氏几何。按所讨论的图形在平面上或空间中,又分别称为“平面几何”与“立体几何”。
其中公理五又称之为平行公设(Parallel
Postulate),叙述比较复杂,并不像其他公理那么显然。这个公设衍生出“三角形内角和等于一百八十度”的定理。在高斯(F.
Gauss)的时代,公设五就备受质疑,俄罗斯数学家罗巴切夫斯基(Nikolay Ivanovitch
Lobachevski)、匈牙利人波尔约(Bolyai)阐明第五公设只是公理系统的一种可能选择,并非必然的几何真理,也就是“三角形内角和不一定等于一百八十度”,从而发现非欧几里得的几何学,即“非欧几何”(non-Euclidean
geometry)。
另一方面,欧几里得几何的五条公理并未具有完备性。例如,该几何中的所有定理:任意线段都是三角形的一部分。他用通常的方法进行构造:以线段为半径,分别以线段的两个端点为圆心作圆,将两个圆的交点作为三角形的第三个顶点。然而,他的公理并不保证这两个圆必定相交。
因此,许多公理系统的修订版本被提出,其中有希尔伯特公理系统。
2、《几何原本》
在欧几里德以前,古希腊人已经积累了大量的几何知识,并开始用逻辑推理的方法去证明一些几何命题的结论。欧几里德将早期许多没有联系和未予严谨证明的定理加以整理,写下《几何原本》一书,标志着欧氏几何学的建立。这部划时代的著作共分13卷,465个命题。其中有八卷讲述几何学,包含了现今中学所学的平面几何和立体几何的内容。但《几何原本》的意义却绝不限于其内容的重要,或者其对诸定理的出色证明。真正重要的是欧几里德在书中创造的公理化方法。
这部科学著作是发行最广而且使用时间最长的书。后又被译成多种文字,共有二千多种版本。它的问世是整个数学发展史上意义极其深远的大事,也是整个人类文明史上的里程碑。两千多年来,这部著作在几何教学中一直占据着统治地位,至今其地位也没有被动摇,包括中国在内的许多国家仍以它为基础作为几何教材。
3、公设和公理
欧式几何的传统描述是一个公理系统,通过有限的公理来证明所有的“真命题”。
欧式几何的五条公理是:
1、任意两个点可以通过一条直线连接。
2、任意线段能无限延长成一条直线。
3、给定任意线段,可以以其一个端点作为圆心,该线段作为半径作一个圆。
4、所有直角都全等。
5、若两条直线都与第三条直线相交,并且在同一边的内角之和小于两个直角和,则这两条直线在这一边必定相交。
第五条公理称为平行公理(平行公设),可以导出下述命题:
通过一个不在直线上的点,有且仅有一条不与该直线相交的直线。
平行公理并不像其他公理那么显然。许多几何学家尝试用其他公理来证明这条公理,但都没有成功。19世纪,通过构造非欧几里得几何,说明平行公理是不可证的(若从上述公理体系中去掉平行公理,则可以得到更一般的几何,即绝对几何)。
另外五条公理是:
1、等于同量的量彼此相等。
2、等量加等量,其和仍相等。
3、等量减等量,其差仍相等。
4、彼此能够重合的物体是全等的。
5、整体大于部分。
4、详细说明
在证明几何命题时,每一个命题总是从再前一个命题推导出来的,而前一个命题又是从再前一个命题推导出来的。我们不能这样无限地推导下去,应有一些命题作为起点。这些作为论证起点,具有自明性并被公认下来的命题称为公理,如“两点确定一条直线”即是一例。同样对于概念来讲也有些不加定义的原始概念,如点、线等。在一个数学理论系统中,我们尽可能少地先取原始概念和不加证明的若干公理,以此为出发点,利用纯逻辑推理的方法,把该系统建立成一个演绎系统,这样的方法就是公理化方法。欧几里德采用的正是这种方法。他先摆出公理、公设、定义,然后有条不紊地由简单到复杂地证明一系列命题。他以公理、公设、定义为要素,作为已知,先证明了第一个命题。然后又以此为基础,来证明第二个命题,如此下去,证明了大量的命题。其论证之精彩,逻辑之周密,结构之严谨,令人叹为观止。零散的数学理论被他成功地编织为一个从基本假定到最复杂结论的系统。因而在数学发展史上,欧几里德被认为是成功而系统地应用公理化方法的第一人,他的工作被公认为是最早用公理法建立起演绎的数学体系的典范。
5、完善
公理化方法已经几乎渗透于数学的每一个领域,对数学的发展产生了不可估量的影响,公理化结构已成为现代数学的主要特征。而作为完成公理化结构的最早典范的《几何原本》,用现代的标准来衡量,在逻辑的严谨性上还存在着不少缺点。如一个公理系统都有若干原始概念(或称不定义概念),如点、线、面就属于这一类。欧几里德对这些都做了定义,但定义本身含混不清。另外,其公理系统也不完备,许多证明不得不借助于直观来完成。此外,个别公理不是独立的,即可以由其他公理推出。这些缺陷直到1899年德国数学家希尔伯特的在其《几何基础》出版时得到了完善。在这部名著中,希尔伯特成功地建立了欧几里德几何的完整、严谨的公理体系,即所谓的希尔伯特公理体系。这一体系的建立使欧氏几何成为一个逻辑结构非常完善而严谨的几何体系。也标志着欧氏几何完善工作的终结。
6、历史人物
由于欧式几何具有鲜明的直观性和有着严密的逻辑演绎方法相结合的特点,在长期的实践中表明,它已成为培养、提高青、少年逻辑思维能力的好教材。历史上不知有多少科学家从学习几何中得到益处,从而作出了伟大的贡献。
少年时代的牛顿在剑桥大学附近买到一本《几何原本》,开始他认为这本书的内容没有超出常识范围,因而并没有认真地去读它,而对笛卡儿的“坐标几何”很感兴趣而专心攻读。后来,牛顿于1664年4月在参加特列台奖学金考试的时候遭到落选,当时的考官巴罗博士对他说:“因为你的几何基础知识太贫乏,无论怎样用功也是不行的。”这席谈话对牛顿的震动很大。于是,牛顿又重新把《几何原本》从头到尾地反复进行了深入钻研,为以后的科学工作打下了坚实的数学基础。
近代物理学的科学巨星爱因斯坦也是精通几何学,并且应用几何学的思想方法,开创自己研究工作的一位科学家。爱因斯坦在回忆自己曾走过的道路时,特别提到在十二岁的时候“几何学的这种明晰性和可靠性给我留下了一种难以形容的印象”。后来,几何学的思想方法对他的研究工作确实有很大的启示。他多次提出在物理学研究工作中也应当在逻辑上从少数几个所谓公理的基本假定开始。在狭义相对论中,爱因斯坦就是运用这种思想方法,把整个理论建立在两条公理上:相对原理和光速不变原理。
------------------------------------------------------------------------
译林版《几何原本》略评
读过译林版原稿,想和人民日报出版社和陕西科技出版社的版本作个比较。
迄今为止,当代国内出版的汉译本实质只有两个版本:人民日报版和陕西科技版——台湾九章、译林本,均出自陕西科技版。
译林出版社的《几何原本》,使用了陕西科技出版社底本,这里一并讨论如下——
兰纪正、朱恩宽的译本,目前算是大陆流传不多、但比较正式的本子。陕西科技出版社曾经数次重版,但此本问题较多,译林社进行重版时,译者与编辑合作,进行了大量修正工作。
1.
本书配有长篇的前言和后记,介绍了前欧几里得几何发展史和《几何原本》发展、流传和译介史,同时针对一些没有解决的几何问题做了说明。在这些序跋中,陕西科技版各种标点符号、译名错误极多,鲁鱼豕亥的文字错误频频出现。译林版进行了统一修订(据闻译林社容错率为十万分之一,较普通出版社要严格十倍)。
2.
本书转译自希斯的英译本,一些希腊引文都由译林社的陆元昶作了校订,删去前言中的日本人林鹤一的著作名已经由错误的形似汉字,还原为假名;
3.
立体几何部分,希斯译本原书配图均为实线,无立体效果,译林版在重新校订的过程中,根据证明需要,将相应部分均改为虚线,以期达到透视化的效果,更有利于理解证明过程——这也是和以往所有中文译本不同的亮点。
4. 另,译者又给出了40多处的校订意见,均如实补入书中。
总的来看,新出的译林版最佳,陕西科技及台版次之,人民日报出版社的编译本属垃圾版,不可读。
以上所见,仅供参考。
==============================
PS:人民日报出版社的版本并不佳,有豆友已经吐槽,不多说,但应该提醒某些读者:请提高辨别书籍质量优劣的能力。但凡封面上写着
×××编著 /
编译的书籍,创作态度都极为不严肃,根本不可读——更不要提面对购买像《几何原本》这样精细的学术著作,读者买了烂本,除了谴责出版界乱相,是不是要反思一下自己判别能力太差?
【另有明代利玛窦、徐光启前六卷译本,清代李善兰、伟烈亚力后九卷译本,其中前六卷本已经收入《徐光启文集》,由上海古籍出版社标点出版,图形及文字亦可喜,惟用古文翻译,个人认为此本只有文献价值,几何学意义上的学术实用价值反而不大。】