2015年09月12日

A 39-year-old man who had been completely paralyzed for four years was able to voluntarily control his leg muscles and take thousands of steps in a “robotic exoskeleton” device during five days of training — and for two weeks afterward — a team of UCLA scientists reports this week.
This is the first time that a person with chronic, complete paralysis has regained enough voluntary control to actively work with a robotic device designed to enhance mobility.
In addition to the robotic device, the man was aided by a novel noninvasive spinal stimulation technique that does not require surgery. His leg movements also resulted in other health benefits, including improved cardiovascular function and muscle tone.
The new approach combines a battery-powered wearable bionic suit
that enables people to move their legs in a step-like fashion, with
a noninvasive procedure that the same researchers had previously
used to
In the latest study, the researchers treated Mark Pollock, who lost his sight in 1998 and later became the first blind man to race to the South Pole. In 2010, Pollock fell from a second-story window and suffered a spinal cord injury that left him paralyzed from the waist down.
At UCLA, Pollock made substantial progress after receiving a few weeks of physical training without spinal stimulation and then just five days of spinal stimulation training in a one-week span, for about an hour a day.
“In the last few weeks of the trial, my heart rate
hit
Even in the
years since he lost his sight, Pollock has competed in
ultra-endurance races across deserts, mountains and the polar ice
caps. He also won silver and bronze medals in rowing at the
Commonwealth Games and launched a
“Stepping
with the stimulation and having my heart rate increase, along with
the
The
“It will be difficult to get people with complete paralysis to walk completely independently, but even if they don’t accomplish that, the fact they can assist themselves in walking will greatly improve their overall health and quality of life,” said V. Reggie Edgerton, senior author of the research and a UCLA distinguished professor of integrative biology and physiology, neurobiology and neurosurgery.
The procedure used a robotic device manufactured by Richmond, California-based Ekso Bionics which captures data that enables the research team to determine how much the subject is moving his own limbs, as opposed to being aided by the device.
“If the robot does all the work, the subject becomes passive and the nervous system shuts down,” Edgerton said.
The data showed that Pollock was actively flexing his left knee and raising his left leg and that during and after the electrical stimulation, he was able to voluntarily assist the robot during stepping; it wasn’t just the robotic device doing the work.
https://doximity-res.cloudinary.com/image/upload/v1441230196/qa3y6yczt2vf9yvy6whv.jpg“For people who are severely injured but not completely paralyzed, there’s every reason to believe that they will have the opportunity to use these types of interventions to further improve their level of function. They’re likely to improve even more,” Edgerton said. “We need to expand the clinical toolbox available for people with spinal cord injury and other diseases.”
Edgerton and
his research team have received many awards and honors for their
research, including Popular Mechanics’
2011
“Dr. Edgerton
is a pioneer and we are encouraged
“What we are
seeing right now in the field of spinal cord research is a surge of
momentum with
Grace Peng, director of NIBIB’s Rehabilitation Engineering Program, said, “This is a great example of a therapeutic approach that combines two very different modalities — neuromodulation and robotic assist devices — to achieve a result that could not be realized with either approach alone. This multi-device approach, much like multi-drug therapy, may ultimately benefit patients with impaired mobility in a wide variety of rehabilitation settings.”
NeuroRecovery Technologies, a medical technology company Edgerton founded, designs and develops devices that help restore movement in patients with paralysis. The company provided the device used to stimulate the spinal cord in combination with the Ekso in this research.
Edgerton said
although it likely will be years before the new approaches are
widely available, he now believes it is possible to significantly
improve quality of life for patients with severe spinal cord
injuries, and to help them recover multiple body functions.
Although his laboratory is making dramatic progress, it only is
able to work with a small number of patients due to limited
resources.
“We could accomplish a lot more in advancing the science and technology with more resources,” Edgerton said.
The lead author of the new research is UCLA research scientist Parag Gad. Lead co-authors were Yury Gerasimenko, director of the laboratory of movement physiology at Russia’s Pavlov Institute and a researcher in the UCLA department of integrative biology and physiology; and Dr. Daniel Lu, associate professor of neurosurgery in UCLA’s David Geffen School of Medicine. Other key UCLA contributors were research technician Sharon Zdunowski, researchers Dimitry Sayenko and Roland Roy, research associate Piia Haakana and Amanda Turner, Edgerton’s laboratory coordinator.
In addition
to the Reeve foundation, the research was funded by
the
Almost 6 million Americans live with paralysis, including nearly 1.3 million with spinal cord injuries.