[转载]matlab各种窗口(1)

标签:
转载 |
rectwin -Rectangular
window
Syntax
w=rectwin(L)
Description
w
Algorithm
w = ones(L,1);
References
[1] Oppenheim, A.V., and R.W.
Schafer.
taylorwin -Taylor
window
Syntax
w = taylorwin(n)
w = taylorwin(n,nbar)
w = taylorwin(n,nbar,sll)
Description
Taylor windows are similar to Chebyshev windows. While a Chebyshev window has the narrowest possible mainlobe for a specified sidelobe level, a Taylor window allows you to make tradeoffs between the mainlobe width and sidelobe level. The Taylor distribution avoids edge discontinuities, so Taylor window sidelobes decrease monotonically. Taylor window coefficients are not normalized. Taylor windows are typically used in radar applications, such as weighting synthetic aperature radar images and antenna design.
w = taylorwin(n)
w = taylorwin(n,nbar)
w = taylorwin(n,nbar,sll)
Example
Generate a 64-point Taylor window with four nearly constant-level sidelobes and a peak sidelobe level of -35 dB relative to the mainlobe peak.
w = taylorwin(64,4,-35); wvtool(w);
http://www.mathworks.com/help/toolbox/signal/taylorwin.gif
References
[1] Carrara, W.G., R.M. Majewski and R.S.
Goodman,
[2] Brookner, Eli,
triang -Triangular
window
Syntax
triang(L)
Description
triang(L)
For
http://www.mathworks.com/help/toolbox/signal/eqn1142451893.gif
For
http://www.mathworks.com/help/toolbox/signal/eqn1142452057.gif
The triangular window is very similar to a Bartlett window. The
Bartlett window always ends with zeros at samples 1
and
Examples
Create a 200-point triangular window and plot the result using WVTool.
L=200; wvtool(triang(L))
http://www.mathworks.com/help/toolbox/signal/triang.gif
References
[1] Oppenheim, A.V., and R.W.
Schafer,
tukeywin -Tukey
(tapered cosine) window
Syntax
w=tukeywin(L,r)
Description
w
Examples
Compute 128-point Tukey windows with five different tapers and display the results using WVTool:
L=128; t0=tukeywin(L,0); % Equivalent to rectangular window t25=tukeywin(L,0.25); t5=tukeywin(L); % r=0.5 t75=tukeywin(L,0.75); t1=tukeywin(L,1); % Equivalent to Hann window wvtool(t0,t25,t5,t75,t1)
http://www.mathworks.com/help/toolbox/signal/tukeywin.gif
Algorithm
The following equation defines the
http://www.mathworks.com/help/toolbox/signal/eqn1244142224.gif
where
References
[1] Harris, F. J. "On the Use of Windows for Harmonic Analysis with
the Discrete Fourier Transform."
parzenwin -Parzen
(de la Valle-Poussin) window
Syntax
w=parzenwin(L)
Description
w
Examples
Compare 64-point Parzen and Gaussian windows and display the result
using
wintool(sigwin.parzenwin(64),sigwin.gausswin(64))
http://www.mathworks.com/help/toolbox/signal/parzenwin_ex.gif
Algorithm
The following equation defines the
http://www.mathworks.com/help/toolbox/signal/eqn1244645527.gif
References
[1] Harris, F.J. "On the Use of Windows for Harmonic Analysis with
the Discrete Fourier Transform."