[转载]libsvm中参数c与g的调整
(2016-01-19 20:41:46)
标签:
转载 |
分类: 故障诊断 |
4)采用交叉验证选择最佳参数C与g
通常而言,比较重要的参数是 gamma (-g) 跟 cost (-c) 。而 cross validation (-v)
的参数常用5。那么如何去选取最优的参数c和g呢?libsvm 的 python 子目录下面的 grid.py 可以帮助我们。 此时。其中安装python2.5需要(一般默认安装到c:/python25
下),将gnuplot解压。安装解压完毕后,进入/libsvm/tools目录下,用文本编辑器(记事
本,edit都可以)修改grid.py文件,找到其中关于gnuplot路径的那项(其默认路径为
gnuplot_exe=r"c:/tmp/gnuplot/bin/pgnuplot.exe"),根据实际路径进行修改,并保存。然
后,将grid.py和C:/Python25目录下的python.exe文件拷贝到libsvm/windows目录下,键入以下命令:$ python grid.py train.1.scale 执行后,即可得到最优参数c和g。
另外,至于下libsvm和python的接口的问题,在libsvm2.86中林老师已经帮助我们解决,在/libsvm/windows/python目录下自带了svmc.pyd这个文件,将该文件文件复制到
libsvm/python目录下,同时,也将python.exe文件复制到该目录下,键入以下命令以检验效
果(注意:.Py文件中关于gnuplot路径的那项路径一定要根据实际路径修改):
python svm_test.py
如果能看到程序执行结果,说明libsvm和python之间的接口已经配置完成,以后就可以直接在python程序里调用libsvm的函数了!