浙科版高中生物教科书中,对有关动作电位的上升支和下降支没有明确的定义性的划分,因此在平时的练习题和参考书中,经常出现相互矛盾、不统一的说法。上网检索的有关“去极化、反极化、复极化、静息、极化”的定义,也有很多分歧。例如,下列是有关一位网友的整理:
五年制蓝皮7版的去极化解释为“RP电位减小的过程或状态为去极化”
人卫配套的同步练习认为一个AP是“极化-去极化-反极化-复极化-超极化-恢复”过程
人卫09版西综辅导生理分册认为反极化是去极化的一部分
翟中和主编《细胞生物学》中细胞生理和北医的Medicine
Master的《生理学》默认整个升支为去极化
《奈特生理学图谱》没有说明
八年制和Guyton的书不在手边。
那究竟是前者包含后者还是前者与后者共同组成一个升支
动作电位形成条件:
①细胞膜两侧存在离子浓度差,细胞膜内K+浓度高于细胞膜外,而细胞外Na+、Ca2+、Cl-高于细胞内,这种浓度差的维持依靠离子泵的主动转运。(主要是Na+-K+泵的转运)。 ②细胞膜在不同状态下对不同离子的通透性不同,例如,安静时主要允许K+通透,而去极化到阈电位水平时又主要允许Na+通透。③可兴奋组织或细胞受阈刺激或阈上刺激。形成过程 ≥阈刺激→细胞部分去极化→Na+少量内流→去极化至阈电位水平→Na+内流与去极化形成正反馈(Na+爆发性内流)→基本达到Na+平衡电位(膜内为正膜外为负,因有少量钾离子外流导致最大值只是几乎接近钠离子平衡电位)(形成动作电位上升支)。 膜去极化达一定电位水平→Na+内流停止、K+迅速外流(形成动作电位下降支)。形成机制 动作电位上升支——Na+内流所致。 动作电位的幅度决定于细胞内外的Na+浓度差,细胞外液Na+浓度降低动作电位幅度也相应降低,而阻断Na+通道(河豚毒)则能阻碍动作电位的产生。 动作电位下降支——K+外流所致。
动作电位时细胞受到刺激时细胞膜产生的一次可逆的、可传导的电位变化。产生的机制为①阈刺激或阈上刺激使膜对Na+的通透性增加,Na+顺浓度梯度及电位差内流,使膜去极化,形成动作电位的上升支。②Na+通道失活,而 K+通道开放,K+外流,复极化形成动作电位的下降支。③钠泵的作用,将进入膜内的Na+泵出膜外,同时将膜外多余的 K+泵入膜内,恢复兴奋前时离子分布的浓度。离子通道的特征 细胞膜上有多种离子通道。而动作电位的产生,则与钠和钾离子通道有关。这些离子通道的开关状态与膜电位有关,即是所谓的电压门控通道。 例如钠离子通道,在静息时它是关闭并且是可激活的。当去极化到一特定值时就会引起其构象的改变,成为打开状态。但是离子通道却不会持续停留在开放状态,它会在几毫秒内关闭。这是通过膜上一蛋白质的失活域的活动实现的,这个失活域会像塞子一样堵住离子通道。离子通道这种状态被称为关闭并失活的。过渡状态关闭但可激活的只有在完全复极化后才可能出现,而开放可激活的状态是在简单模型中不可能实现的。(文献中也写道,一个关闭并失活的通道在复极过程中首先短时间内还是开放状态,然后才改变构象直接成为关闭但可激活的。再次激活只能发生在完全复极之后,在去极化的细胞膜中不可能存在着过渡状态开放并失活的)。 当然,并不是所有的通道在电位到达一定值之时全部打开。更可能的是,通道的处于某种状态的概率是与电压相关的。而当阈电位出现时,大部分的通道便会开放,上述的模型便能很好的描述这种状态。 而状态之间过渡所需的时间也是因通道而异的。钠通道从关到开发生在2毫秒之内,而钾通道则要10毫秒。 除了电压外,还有其他开关通道的机制,如化学门控通道。对动作电位来说,有两种值得一提。一种是与内向整流性钾通道Kir有关,这种通道是不可调控的。但却有一些带正电的小分子如精素,能够在去极化到一定程度时堵塞通道孔。另一种机制与钾通道有关,当细胞间的钙离子与它结合后会开放。静息电位(Resting
Potential , RP )是指细胞未受刺激时,存在于细胞膜内外两侧的外正内负的电位差。由于这一电位差存在于安静细胞膜的两侧,故亦称跨膜静息电位,简称静息电位或膜电位。
静息电位形成机理产生的基本原因是离子的跨膜扩散,和钠-钾泵的特点也有关系。细胞膜内K+浓度高于细胞外。安静状态下膜对K+通透性大, K+顺浓度差向膜外扩散,膜内的蛋白质负离子不能通过膜而被阻止在膜内,结果引起膜外正电荷增多,电位变正;膜内负电荷相对增多,电位变负,产生膜内外电位差。这个电位差阻止K+进一步外流,当促使K+外流浓度差和阻止K+外流的电位差这两种相互对抗的力量相等时,K+外流停止。膜内外电位差便维持在一个稳定的状态,即静息电位。把静息时细胞的膜内负外正的状态称为膜的极化状态(polarization);当膜两侧的极化现象加剧时称超极化(hyperpolarization)。相反,当极化现象减弱时称为去极化(depolarization)。当膜由原来的-70mV去极化到0mV,进而变化到20-40mV,去极化超过0电位的部分称为超射,此时膜的状态称为反极化状态
细胞的生物电现象及其产生机制
1. 静息电位:细胞未受刺激时膜两侧的电位差。(由钾离子外流形成)
2. 动作电位:细胞受刺激时,细胞膜在静息电位基础上发生的一次迅速而短暂的可扩布性电位。
膜电位状态
极化 :静息电位存在时膜两侧保持的内负外正的状态。
去极化:静息电位减小甚至消失的过程。(主要由钠离子内流形成)
反极化:膜内电位由零变为正值的过程。
超射值:膜内电位由零到反极化顶点的数值。
复极化:去极化、反极化后恢复到极化的过程。(主要是由钾离子外流产生)超极化:静息电位增大的过程。
动作电位的特点:①“全或无”现象 ②不衰减性传导
动作电位的意义:兴奋的标志
静息电位产生机制1:细胞内钾浓度高于细胞外,安静时膜对钾的通透性较大,故钾外流聚于膜外,带负电的蛋白不能外流而滞于膜内,使膜外带正电,膜内带负电。
静息电位产生机制2:当促使钾外流的钾浓度势能差同阻碍钾外流的电势能差(钾外流导致的外正内负)相等时,钾跨膜净移动量为零,故静息电位相当Ek。
动作电位机制1:细胞受刺激时,膜对钠的通透性增加,因膜外钠浓度高于膜内且受膜内负电的吸引,故钠内流引起上升支直至内移的钠在膜内形成的正电位足以阻止钠的净移入时为止(ENa)。
动作电位机制2:下降支:钠通道关闭,钾通道开放,钾外流引起。随后钠泵工作,泵出钠、泵入钾,恢复膜两侧原浓度差。
加载中,请稍候......