[转载]食物的消化吸收过程
标签:
转载 |
分类: 从里到外说健康 |
关于小肠的吸收面积
小肠的全长约为5~6 m,小肠腔面有许多由黏膜和黏膜下层向肠腔突出而形成的环形的皱襞,以及皱襞表面的绒毛。由于皱襞和绒毛的存在,使小肠的吸收面积增大了30倍。用光学显微镜观察,可以看到绒毛壁是一层柱状上皮细胞,细胞顶端(即面向肠腔的一端)有明显的纵纹。近年来用电子显微镜观察,看到上皮细胞顶端的纵纹是细胞膜突起,这叫做微绒毛。每个柱状上皮细胞可以有1 700条左右的微绒毛。微绒毛的存在,又使小肠的吸收面积比上面所估计的数值增大20倍以上。总之,由于环形皱襞、绒毛和微绒毛的存在,使小肠的表面积比原来的表面积增大了600倍左右。
胃的运动
胃的运动主要有以下三方面的作用。
贮存食物
使食物和胃液充分混合
胃的排空
小肠运动
小肠的运动方式主要有分节运动和蠕动两种。分节运动是一种以环行肌舒缩为主的节律性运动(图8)。由于一定间隔的环行肌同时收缩,所以能把食糜分割成许多节段,数秒以后,收缩的部分舒张,原来舒张部分的中间收缩,于是食糜形成新的节段。如此反复进行,使食糜与消化液充分混合,便于化学性消化。分节运动还能使食糜与肠壁紧密接触,有助于吸收。
蠕动是一种环行肌和纵行肌同时收缩的运动,它的作用是把食糜向大肠方向推送。小肠蠕动的速度很慢,每秒约1~2 cm。每个蠕动波把食糜推进一段距离(约数厘米)后即消失,然后在下一段又发生一个新的蠕动波,从而使经过分节运动作用过的食糜向前推进到一个新肠段,再开始分节运动。
正常情况下,小肠蠕动时,肠内的食糜和水、气体等被推动而发生一种“咕噜咕噜”的声音,叫肠鸣音。用听诊器可以在腹壁上听到。有时小肠蠕动加强,可以直接听到,即一般所谓的“肚子叫”,这种情况在肠炎腹泻时,尤为明显,称为肠鸣音亢进(增强)。
消化液的成分和作用
各种消化液的成分和作用不尽相同,现在分别介绍如下。
唾液
胃液
胰液
胰液由于含有消化三种主要营养成分的消化酶,因而是所有消化液中最重要的一种。临床和实验都证明,当胰液缺乏时,即使其他消化液的分泌都很正常,食物中的蛋白质和脂肪仍然不能完全消化,因而也影响营养成分的吸收。脂肪吸收的障碍,还可以使脂溶性维生素的吸收受到影响。胰液缺乏时,糖类的消化一般不受影响。
胆汁
小肠液
营养物质的吸收
糖类经过消化分解为单糖(主要是葡萄糖,还有果糖和半乳糖)以后,由小肠黏膜吸收入小肠绒毛内的毛细血管,再通过门静脉入肝,一部分合成肝糖元贮存起来,另一部分由肝静脉入体循环,供全身组织利用。
蛋白质主要以氨基酸的形式被小肠黏膜吸收,经过小肠绒毛内的毛细血管进入血液循环。有些未经消化的天然蛋白质或蛋白质分解的中间产物,也可以被小肠黏膜吸收,但吸收量极少。有些人对某种食物过敏,可能是由于某种蛋白质被小肠直接吸收而引起的。
脂肪在胆盐、胰液和小肠液的作用下消化分解,形成甘油、游离脂肪酸和甘油一酯,以及少量的甘油二酯和未消化的甘油三酯。胆盐可以与脂肪的水解产物形成水溶性复合物。这些水溶性复合物聚合成脂肪微粒(主要成分为胆盐、甘油一酯和脂肪酸)。有人认为这种脂肪微粒能被小肠上皮细胞通过吞饮作用而直接吸收。但也有人认为这种脂肪微粒在被吸收时,各主要成分先分离再分别进入小肠上皮细胞。当上述物质(主要是甘油一酯和脂肪酸)进入小肠上皮细胞后,重新合成为中性脂肪,并在外面包上一层由卵磷脂和蛋白质形成的膜,而成为乳糜微粒。乳糜微粒和多数长链脂肪酸进入小肠绒毛内的毛细淋巴管(也叫中央乳糜管),再经过淋巴循环间接进入血液。多数短、中链脂肪酸和甘油可以溶于水,被吸收入毛细血管,直接进入血液循环。由于食物中的动、植物油含长链脂肪酸较多,因此,脂肪的吸收以淋巴途径为主。
肝脏的主要功能
肝脏具有以下一些主要功能:
代谢功能
肝脏在蛋白质的合成和分解的过程中都起着重要的作用。人体的一般组织细胞都能合成自己的蛋白质,但是肝脏除能合成自己的蛋白质以外,还能合成大部分的血浆蛋白质(如白蛋白、纤维蛋白原等)。据估计,肝脏合成的蛋白质占全身合成蛋白质总量的40%以上。所以患慢性肝炎或严重肝病变的病人,血中的白蛋白含量显著降低。肝脏中氨基酸代谢比其他组织中的氨基酸代谢活跃,这是因为肝脏中含有丰富的催化氨基酸代谢的酶类,谷氨酸丙酮酸转氨酶(简称GPT)就是其中之一。正常肝细胞中的GPT很少进入血液,只有肝病变时,由于肝细胞的细胞膜通透性增加,或肝细胞坏死,GPT可以大量进入血液。所以,临床上常用测定血清中GPT的数值,作为诊断肝脏疾病的重要指标之一。
肝脏在糖类代谢中占有重要地位。在肝脏中,葡萄糖和糖元可以互相转化;从小肠吸收来的其他单糖(如果糖、半乳糖等)可以转化为葡萄糖;脂肪和蛋白质代谢过程中产生的某些非糖物质也可以转化成糖。其中特别重要的作用是维持血液中葡萄糖(简称血糖)含量的相对恒定,以保证全身(特别是脑组织)糖的供应。血糖的含量通常约为80~120 mg/dL。当大量的食物经过消化,陆续吸收到体内,血糖含量会显著地增加。这时,肝脏可以把一部分葡萄糖转变成糖元,暂时贮存起来,使血糖含量仍然维持在80~120 mg/dL的水平。由于细胞进行生理活动要消耗血糖,血糖的含量会逐渐降低。这时,肝脏中的糖元又可以转变成葡萄糖,陆续释放到血液中,使血糖的含量仍然维持在80~120 mg/dL的水平。
肝脏在脂类代谢中也有重要作用。肝细胞分泌的胆汁可以促进脂类的消化和吸收。肝功能障碍时,胆汁分泌减少,脂肪消化不良,就出现厌油食等症状,所以肝病患者要少吃脂肪。此外,肝脏还是合成磷脂,胆固醇等的重要场所。
肝脏在维生素代谢中也有作用,它是维生素A、D、E、K、B1、B6和B12等多种维生素的贮存场所。肝脏能把食物中的胡萝卜素转变为维生素A,因此,多吃含有胡萝卜素的蔬菜(如胡萝卜、番茄等),就不容易发生维生素A的缺乏症。
解毒功能
蛋白质吸收到体内后的变化
食物中的蛋白质消化成各种氨基酸,吸收到体内以后,有以下四个方面的转变:①直接被用来合成各种组织蛋白质,包括血浆蛋白和血红蛋白。有些组织蛋白质的合成进行得非常迅速。例如,老鼠的肝脏被切去70%后,差不多在9~12 d之内就可以全部再生出来。临床观察也证明,人的肝脏被部分切除以后,也能迅速再生;②经脱氨基作用而分解为含氮部分(即氨基)和不含氮部分:氨基可以转变为尿素而排出体外;不含氮部分可以合成糖类、脂肪,也可以分解成二氧化碳和水;③通过氨基转换作用,氨基可以转移给其他化合物以形成新的氨基酸;④经过脱羧基作用,可以产生胺类,例如组氨酸脱去羧基(COOH)后,可以生成组织胺或新的氨基酸。
糖类吸收到体内后的变化
食物中的多糖和二糖在小肠内消化成为单糖(葡萄糖、果糖、半乳糖等)以后,才吸收到体内。所有非葡萄糖的单糖吸收到血液后,也都要转变为葡萄糖。葡萄糖通过血液循环运输到人体的各个部分,向下述3个方面转变:①一部分氧化分解,最后生成二氧化碳和水,并释放能量供生命活动的需要;②一部分被各种组织合成为糖元,其中的肝脏和骨骼肌是合成糖元的主要器官。糖元在肝脏中是作为能量的暂时贮备,但在肌肉中则是供给肌肉活动的能量;③还有一部分转变为脂肪和某些氨基酸的非氮部分。
脂类吸收到体内后的变化
食物中的脂类经过消化,吸收到体内以后,可能发生以下4个方面的转变:①在皮下、肠系膜等处贮存起来;②再分解为甘油和脂肪酸等,然后直接氧化生成二氧化碳和水,或者转变为肝糖元等;③参与构成人体的组织;④被各种腺体利用来产生其特殊的分泌物,如外分泌腺所分泌的乳汁、皮脂,内分泌腺所分泌的各种类固醇激素(肾上腺分泌的肾上腺皮质激素,性腺分泌的性激素)等。

加载中…