如图,在RT△ABC中,∠B=90°,BC=5√3,∠C=30°,点D从点c出发沿CA方向以每秒2的速度向点A匀速

分类: 各种题、の答案 |
如图,在RT△ABC中,∠B=90°,BC=5√3,∠C=30°,点D从点c出发沿CA方向以每秒2的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1的速度向点B匀速运动,当其中一个但到达终点时,另一点也随之停止运动,设点D.E运动的时间是t秒,过点D作DF⊥BC与点F,连接DE,EF。
(1)求证AE=DF
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t的值;如不能,请说明理由
(3)当t为何值时,△DEF为RT△?请说明理由
http://s3/middle/8dd0e395tc3feeffb24c2&690
1)在△DFC中,∠DFC=90°,∠C=30°,DC=2t,
∴DF=t.
又∵AE=t,
∴AE=DF.
(2)能.
∵AB⊥BC,DF⊥BC,
∴AE∥DF.
又AE=DF,
∴四边形AEFD为平行四边形.(3分)
∵AB=BC•tan30°=5 =5,
∴AC=2AB=10.
∴AD=AC-DC=10-2t.
若使▱AEFD为菱形,则需AE=AD,
即t=10-2t,t=10/3.
即当t=10/3时,四边形AEFD为菱形.(5分)
(3)CF:CB=CD:CA=t:5
三角形DEF为直角三角形,只能是∠EDF=90°,则四边形BEDF为矩形
DE=BF,DF=BE
因为DF=AE
所以此时E为AB的中点,所以t=5/2/1=2.5