数学抽象在小学数学教学中的应用
(2015-12-06 19:17:56)分类: 教育随笔 |
小学数学中的概念、运算、性质和法则等都是通过数学抽象逐步在学生的头脑中建构起来的,因此,提高数学抽象方法使用的有效性,让学生能够通过数学抽象建立正确的数学知识就显得尤为重要,下面来谈谈数学抽象在小学数学教学中的应用。
1.数学抽象时要充分发挥表象的作用。
表象是感性认识的一种高级形式,它是从具体感知到抽象思维的过渡和桥梁,因此在概念形成、计算法则和公式的推导过程中,建立能突出事物共性的典型表象是非常关键的,这为进一步高水平的抽象概括提供了基础。
例如,在认识平行四边形的时候,为了便于抽象概括出其“两组对边相等”“两组对边分别平行”等本质特征,可以提供给学生如下典型图形充分感知、观察比较后,思考这些图形共同之处,然后再抽象概括。
2.数学抽象要把握时机,及时抽象概括。
在对具体事物充分感知,形成表象后,就要把握好时机,及时抽象概括了,这样才能使感性认识上升到理性认识,提高学生的思维能力。试想,如果不及时抽象概括,那么学生的思维水平必然停留在表面的、肤浅的、零碎的外部现象上,对事物的认识就不能够深入下去。
例如,在认识线段的时候,先让学生“把线拉直”,发现毛线两头拉紧后,中间一段是直直的。然后引导学生在不看实物的情景下,想象出拉直后毛线的状态,并把头脑中形成的图像画下来,以此抽象出线段的概念。这里的抽象概括是建立在学生充分操作、想象的基础上的,时机是恰当,也是及时的。
3.数学抽象要注意层次性。
小学生的抽象能力是随着年龄的增长而逐步发展着的,是从抽取事物外部特征逐步发展到抽取事物本质特征的,是从借助于具体事物进行较低层次的抽象,发展到借助于表象或者数学概念的较高层次的抽象,这种发展需要教师的指导和点拨。
例如,研究轴对称图形时,教师先通过一些具体的轴对称物体抽象为轴对称图案,再抽象为具体的轴对称图形,最后抽象出“对折之后完全重合的图形叫做轴对称图形”这一概念,其中的层次性显而易见。
又如,加法交换律的教学,教师先从具体情境“朝三暮四”的故事中抽象出数量关系“3+4=4+3”,再通过一组这样的等式抽象概括出“交换加数的位置和不变”这一结论,最后用抽象的字母表示为“a+b=b+a”。这种抽象的层次性符合学生认知从具体到抽象、特殊到一般的发展规律,便于学生理解和接受。
4.重视语言在数学抽象过程中的作用。
数学抽象的结果是形式化的,多数是用词、词组和句子来表达的,任何一个数学概念、法则的推导过程也是要借助于语言的指导和帮助的,因此要重视语言在数学抽象过程中的作用。
在数学抽象过程中使用语言,一般有两个作用,一是加工调节作用,通过语言表达,让感知对象的特征更加清晰,表象更加明确精细,这样有利于后续的抽象。二是概括作用,通过语言将抽象出来的结论表达出来,给它命名,或者给出一个结论,便于学生理解和记忆。
例如,异分母分数计算的法则是:“异分母分数相加减,通常先通分,再按同分母分数的加减法计算。”把抽象的计算过程简洁明白地表达出来,不仅使学生易于掌握,而且还可以培养学生的数学语言。
抽象是基本的数学思想。数学抽象方法是数学化的一般方法,是数学学习过程中必定要用到的数学方法。教师在教学中要精心设计数学知识逐步抽象概括的过程,引导学生逐步感悟抽象思想。