加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

交乘项专题:主效应项可以忽略吗?

(2020-06-28 21:57:22)
分类: 线性回归
原文链接:https://www.lianxh.cn/news/2ce3c4fbb6d0f.html


目录

 


对于一个带交乘项 (interaction term) 的线性回归,我们一般会通过命令

regress y x1 x2 x1#x2

来进行回归分析。该回归不仅包括交乘项 (x1#x2) 而且保留了主效应 (x1 x2)。本篇推文讨论的问题是,

当引入交乘项后,保留全部的主效应项是否必要?忽略一个或者全部的主效应项是否可行?

对于该问题,首先要明确引入主效应项和交乘项的目的何在。引入主效应项是为了区分截距,而引入交乘项是为了区分斜率。在接下来的分析中,我们会进一步阐述这句话背后的具体含义。

基于此,对于该问题的回答应为"分情况讨论"。

  • 类别变量相互交乘:可以去掉主效应项,但系数含义不同。

  • 类别变量与连续型变量相互交乘:(1)可以去掉连续型变量主效应项,但系数含义发生改变;(2)一般情况下,不可以去掉类别变量主效应项

  • 连续型变量与连续型变量相互交乘:一般情况下,不可以去掉主效应项

下面,我们通过几个实证的例子来进一步解释说明。


0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有