加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

Stata:协整还是伪回归?

(2020-06-26 21:42:15)
原文链接:https://www.lianxh.cn/news/3ef33e03f1aee.html

Source: Ashish Rajbhandari[1] → Cointegration or spurious regression?

Stata连享会时间序列专题:


目录

 

 


时间序列数据经常是不平稳的而且序列之间往往有一定程度上的联动关系。一组时间序列协整意味着这组序列内存在一个长期的均衡关系。如果这种长期的均衡关系不存在,则表面上的联动则是无意义的。

分析多个不平稳的时间序列是否协整可以帮助理解它们的长期表现。把30年的美国政府债券的利率看作是长期利率,把3个月的同种债券的利率看做是短期利率。根据相关理论,长期利率应该是短期利率的未来预期收益的平均值。这意味着这两个利率之间在一定时间段内不可能有太大的偏离。也就是说,如果这两个利率有协整关系,任何影响短期利率的因素也将带来长期利率的调整。这个见解在做一些政策和投资决策的时候非常有用。

在协整分析中,我们会将一个不平稳的序列对一系列其他不平稳序列进行回归。令人惊讶的是,在有限样本中,用不平稳序列对其他不平稳序列进行回归往往都能得到很显著的系数和很高的  。这种情况虽然看起来很像协整,但实际上往往是伪回归。

在这篇文章中,我会用模拟数据来分别展示在协整和伪回归下 OLS 估计量的渐近性质,然后使用 Engle and Granger(1987) 的方法来检验协整关系。


0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有