[转载]杂化泛函计算FAQ

标签:
转载 |
分类: 量化计算 |
首先给出官网的论坛
http://cms.mpi.univie.ac.at/vasp-forum/forum.php
1.计算光学性质(liliangfang) (由于本人非物理与材料出身,一些理论知识欠缺,有错误的地方还请大家批评指正)
可以计算光学性质的第一原理软件很多,比如CASTEP可以直接计算处理处一些光学性质,而vasp可以计算出的是介电函数矩阵,通过介电函数矩阵处理得到光学性质。
关于介电函数 ,一般的固体物理里面都有定义,如固体物理导论的14.1.1,其第15章是介绍光学性质的。附件1里面附上两片介绍光学性质的文献。
VASP4.6还没有光学模块,所以计算起来比较麻烦,后处理还需小程序。首选4.6需要用PGI(optics这个小程序是基于pgi的)编译,以为后面计算方便,然后还要编译optics这个小程序,是处理计算出来的文件OPTIC,这个文件时用来存放介电函数矩阵的,由于其不能直接打开处理,所以要借助optics。这个程序是Dr. Jürgen Furthmüller写的,可以在他的主页下载(这里找不到主页了,后面找到补上,程序见附件2),如果编译过程遇到问题,可以先在本论坛查找解决方法,也可以给Dr. Jürgen Furthmüller发信咨询(juergen.furthmueller@uni-jena.de)。
至于4.6计算光学性质的步骤,有虫友发过,见附件3VASP5.2已经有光学性质的模块了,计算后再OUTCAR的最近会得到介电函数矩阵,第一部分是介电函数的虚部,第二部分为介电函数实部。得到介电函数的虚部和实部之后,据可以依据公式的推导,得到如折射率与介电函数虚部,实部的关系:
http://data.keyan.cc/edu/0c/66/1129580_1324901243_855.jpg
其他一些关系性质与介电函数关系的公式在附件1里面有,如果需要详细推导过程,请查阅相关关系性质计算的文献。
下面以Si为例(个人经验,在这里是为引出更好的计算方法),简单说一下计算过程及参数设(http://emuch.net/bbs/viewthread.php?tid=2592318 )。利用杂化泛函(在第2部分由WDD880227做介绍)。
http://emuch.net/bbs/viewthread.php?tid=3753879
计算光学性质的过程中,准确计算能带尤为重要,其直接影响光学性质的计算准确度,附件4里面介绍DFT和HSE06计算出的能带及光学性质的比较。
关于计算结果的讨论,一般计算光学性质的文献都有,如附件5是讨论Si和Ge的。
以上是个人的计算的一下经验,贴出来和大家一起交流学习,有错误之处还请大家指教。另外个人有两个问题,这里提出来希望大家多多指教:
(1)
光学性质与能带的关系
(2)
光学性质与纳米晶粒尺寸的(定量)关系
2. 杂化泛函计算
(WDD880227)
这里给出论坛里已有的讨论
http://emuch.net/bbs/viewthread.php?tid=3387913&page=1
先给出两篇文献(见2楼)
(1)PHYSICAL REVIEW B 80, 115205 (2009)
(2) PHYSICAL REVIEW B 80, 155124 (2009)
(3) PHYSICAL REVIEW B 80, 205113 (2009)
VASP :HSE Calculation
杂化泛函: 考虑the non-local Fock exchange energy
第一步是结构优化, 就是每个原子能量最低.
第二步是静态自洽计算得到电子波函数,
这两部和LDA是一样的
第三步就是用上一步的电子波函数做混合泛函计算, 主要是第三步混合泛函第(这一步要把ISMEAR改成-5,ISMEAR改成-5电子占据数不会出现负值,对半导体不会出现能级展宽,师姐传授的经验)
第四步是计算能带。 杂化泛函的计算时候用的K点和第二步不一样 ,是用高对称点产生的K点(不用高对称K点也可以,但是计算得到的能带就是和gw一样,是布里渊区的K点 ) 首先把IBZKPT拷贝到KPOINTS里,然后加上高对称点的kpoints,但是高对称点后面要加一个权重因子0 (高对称点的权重因子为0的解释:高对称点就是单独一个点),cat IBZKPT kpoints > KPOINTS, 注意新得到的KPOINTS的K点总数的和是该KPOINTS第二行的数值 ,这样才能算能带,不过提取的时候用一个特殊的band——plot ,就是截取后面高对称点的值才能得到能带
KPOINTS一般用Monkhorst自动产生,尽量避开用G,六角的时候用G
最新的5.2.12 需要把ENCUTFOCK这个参数换成 PRECFOCK才能计算
杂化泛函是普通泛函所用时间的800-1000倍
杂化泛函参数设置:
LHFCALC = .TRUE.
HFSCREEN = 0.2 (To conform with
the HSE06 functional you need to select (HFSCREEN=0.2))
ALGO = Damped
TIME = 0.4
ENCUTFOCK = 0
AEXX =?(AEXX = [real] (fraction of exact exchange), Other sensible values are of course AEXX=1.0 (full Hartree-Fock type calculations))
LHFCALC- specifies, whether Hartree-Fock type calculations are performed. At the moment, it is recommended to select an all bands simultaneous algorithm, i.e. ALGO=Damped (IALGO=53) or ALGO=All (IALGO=58) in the INCAR file.
In most cases, it is recommended to use the damped algorithm with suitably chosen timestep. The following setup for the electronic optimization works reliably in most cases:
LHFCALC = .TRUE. ; ALGO = Damped ; TIME = 0.4
If convergence is not obtained, it is recommended to reduce the timestep TIME.
HFSCREEN= [real] determines the range separation parameter in range separated hybrid functionals. In combination with PBE potentials, attributing a value to HFSCREEN will switch from the PBE0 functional (in case LHFCALC=.TRUE.) to the closely related HSE03 or HSE06 functional .
The HSE03 and HSE06 functional replaces the slowly decaying long-ranged part of the Fock exchange, by the corresponding density functional counterpart. The resulting expression for the exchange-correlation energy is given by:
http://data.keyan.cc/edu/5c/df/1129580_1324901250_925.jpg
As can be seen above, the separation of the electron-electron interaction into a short- and long-ranged part, labeled SR and LR respectively, is realized only in the exchange interactions. Electronic correlation is represented by the corresponding part of the PBE density functional.
The decomposition of the Coulomb kernel is obtained using the following construction (μ=HFSCREEN):
http://data.keyan.cc/edu/11/93/1129580_1324901261_897.jpg
where http://data.keyan.cc/edu/2d/65/1129580_1324901266_196.jpg
, and µ is the parameter that defines the range-separation, and is related to a characteristic distance, (2/μ), at which the short-range interactions become negligible.
Note: It has been shown that the optimum µ, controlling the range separation is approximately 0.2-0.3 A . To conform with the HSE06 functional you need to select (HFSCREEN=0.2)
It is easily seen from
.http://data.keyan.cc/edu/5c/df/1129580_1324901250_925.jpg
that the long-range term becomes zero for μ=0, and the short-range contribution then equals the full Coulomb operator, whereas for μ= ∞it is
the other way around. Consequently, the two limiting cases of the
HSE03/HSE06 functional are a true PBE0 functional for μ=0 , and a
pure PBE calculation for μ= ∞.
Note: A comprehensive study of the performance of the HSE03/HSE06 functional compared to the PBE and PBE0 functionals can be found in Ref.[J. Paier, M. Marsman, K. Hummer, G. Kresse, I.C. Gerber, and J.G. Ángyán, ``Screened hybrid density functionals applied to solids'', J. Chem. Phys. 124, 154709 (2006). ]
The flag ENCUTFOCK is no longer supported in vasp.5.2.4 and newer versions. Please use PRECFOCK instead,ENCUTFOCK=0对应于PRECFOCK=F, 个人经验ENCUTFOCK=0速度比PRECFOCK=F快将近3倍.
我最近主要是用杂化泛函做一步静态自洽计算,用的是普通的KPOINTS,没有用高对称的K点,杂化参数设置就同上面给出的一样。注意杂化泛函计算(不管是自洽计算还是结构优化)之前一定要有一步PBE的自洽计算。
http://cms.mpi.univie.ac.at/vasp-forum/forum.php
1.计算光学性质(liliangfang)
可以计算光学性质的第一原理软件很多,比如CASTEP可以直接计算处理处一些光学性质,而vasp可以计算出的是介电函数矩阵,通过介电函数矩阵处理得到光学性质。
关于介电函数 ,一般的固体物理里面都有定义,如固体物理导论的14.1.1,其第15章是介绍光学性质的。附件1里面附上两片介绍光学性质的文献。
VASP4.6还没有光学模块,所以计算起来比较麻烦,后处理还需小程序。首选4.6需要用PGI(optics这个小程序是基于pgi的)编译,以为后面计算方便,然后还要编译optics这个小程序,是处理计算出来的文件OPTIC,这个文件时用来存放介电函数矩阵的,由于其不能直接打开处理,所以要借助optics。这个程序是Dr. Jürgen Furthmüller写的,可以在他的主页下载(这里找不到主页了,后面找到补上,程序见附件2),如果编译过程遇到问题,可以先在本论坛查找解决方法,也可以给Dr. Jürgen Furthmüller发信咨询(juergen.furthmueller@uni-jena.de)。
至于4.6计算光学性质的步骤,有虫友发过,见附件3VASP5.2已经有光学性质的模块了,计算后再OUTCAR的最近会得到介电函数矩阵,第一部分是介电函数的虚部,第二部分为介电函数实部。得到介电函数的虚部和实部之后,据可以依据公式的推导,得到如折射率与介电函数虚部,实部的关系:
http://data.keyan.cc/edu/0c/66/1129580_1324901243_855.jpg
其他一些关系性质与介电函数关系的公式在附件1里面有,如果需要详细推导过程,请查阅相关关系性质计算的文献。
下面以Si为例(个人经验,在这里是为引出更好的计算方法),简单说一下计算过程及参数设(
http://emuch.net/bbs/viewthread.php?tid=3753879
计算光学性质的过程中,准确计算能带尤为重要,其直接影响光学性质的计算准确度,附件4里面介绍DFT和HSE06计算出的能带及光学性质的比较。
关于计算结果的讨论,一般计算光学性质的文献都有,如附件5是讨论Si和Ge的。
以上是个人的计算的一下经验,贴出来和大家一起交流学习,有错误之处还请大家指教。另外个人有两个问题,这里提出来希望大家多多指教:
(1)
(2)
2. 杂化泛函计算
这里给出论坛里已有的讨论
http://emuch.net/bbs/viewthread.php?tid=3387913&page=1
先给出两篇文献(见2楼)
(1)PHYSICAL REVIEW B 80, 115205 (2009)
(2) PHYSICAL REVIEW B 80, 155124 (2009)
(3) PHYSICAL REVIEW B 80, 205113 (2009)
VASP :HSE Calculation
杂化泛函: 考虑the non-local Fock exchange energy
第一步是结构优化, 就是每个原子能量最低.
第二步是静态自洽计算得到电子波函数,
第三步就是用上一步的电子波函数做混合泛函计算, 主要是第三步混合泛函第(这一步要把ISMEAR改成-5,ISMEAR改成-5电子占据数不会出现负值,对半导体不会出现能级展宽,师姐传授的经验)
第四步是计算能带。 杂化泛函的计算时候用的K点和第二步不一样 ,是用高对称点产生的K点(不用高对称K点也可以,但是计算得到的能带就是和gw一样,是布里渊区的K点 ) 首先把IBZKPT拷贝到KPOINTS里,然后加上高对称点的kpoints,但是高对称点后面要加一个权重因子0 (高对称点的权重因子为0的解释:高对称点就是单独一个点),cat IBZKPT kpoints > KPOINTS, 注意新得到的KPOINTS的K点总数的和是该KPOINTS第二行的数值 ,这样才能算能带,不过提取的时候用一个特殊的band——plot ,就是截取后面高对称点的值才能得到能带
最新的5.2.12 需要把ENCUTFOCK这个参数换成 PRECFOCK才能计算
杂化泛函是普通泛函所用时间的800-1000倍
杂化泛函参数设置:
LHFCALC = .TRUE.
HFSCREEN = 0.2
ALGO = Damped
TIME = 0.4
ENCUTFOCK = 0
AEXX =?(AEXX = [real] (fraction of exact exchange), Other sensible values are of course AEXX=1.0 (full Hartree-Fock type calculations))
LHFCALC- specifies, whether Hartree-Fock type calculations are performed. At the moment, it is recommended to select an all bands simultaneous algorithm, i.e. ALGO=Damped (IALGO=53) or ALGO=All (IALGO=58) in the INCAR file.
In most cases, it is recommended to use the damped algorithm with suitably chosen timestep. The following setup for the electronic optimization works reliably in most cases:
LHFCALC = .TRUE. ; ALGO = Damped ; TIME = 0.4
If convergence is not obtained, it is recommended to reduce the timestep TIME.
HFSCREEN= [real] determines the range separation parameter in range separated hybrid functionals. In combination with PBE potentials, attributing a value to HFSCREEN will switch from the PBE0 functional (in case LHFCALC=.TRUE.) to the closely related HSE03 or HSE06 functional .
The HSE03 and HSE06 functional replaces the slowly decaying long-ranged part of the Fock exchange, by the corresponding density functional counterpart. The resulting expression for the exchange-correlation energy is given by:
http://data.keyan.cc/edu/5c/df/1129580_1324901250_925.jpg
As can be seen above, the separation of the electron-electron interaction into a short- and long-ranged part, labeled SR and LR respectively, is realized only in the exchange interactions. Electronic correlation is represented by the corresponding part of the PBE density functional.
The decomposition of the Coulomb kernel is obtained using the following construction (μ=HFSCREEN):
http://data.keyan.cc/edu/11/93/1129580_1324901261_897.jpg
where
, and µ is the parameter that defines the range-separation, and is related to a characteristic distance, (2/μ), at which the short-range interactions become negligible.
Note: It has been shown that the optimum µ, controlling the range separation is approximately 0.2-0.3 A . To conform with the HSE06 functional you need to select (HFSCREEN=0.2)
It is easily seen from
.
that the long-range term becomes zero for μ=0, and the short-range contribution then equals the full Coulomb operator, whereas for
Note: A comprehensive study of the performance of the HSE03/HSE06 functional compared to the PBE and PBE0 functionals can be found in Ref.[J. Paier, M. Marsman, K. Hummer, G. Kresse, I.C. Gerber, and J.G. Ángyán, ``Screened hybrid density functionals applied to solids'', J. Chem. Phys. 124, 154709 (2006). ]
The flag ENCUTFOCK is no longer supported in vasp.5.2.4 and newer versions. Please use PRECFOCK instead,ENCUTFOCK=0对应于PRECFOCK=F, 个人经验ENCUTFOCK=0速度比PRECFOCK=F快将近3倍.
我最近主要是用杂化泛函做一步静态自洽计算,用的是普通的KPOINTS,没有用高对称的K点,杂化参数设置就同上面给出的一样。注意杂化泛函计算(不管是自洽计算还是结构优化)之前一定要有一步PBE的自洽计算。