详解芬顿氧化法

标签:
工业水处理环保活性污泥生产污水处理 |
分类: 环保水处理 |
更多关注公号:环保水处理(hbscl01)
芬顿氧化法可作为废水生化处理前的预处理工艺,也可作为废水生化处理后的深度处理工艺。
芬顿氧化法主要适用于含难降解有机物废水的处理,如造纸工业废水、染整工业废水、煤化工废水、石油化工废水、精细化工废水、发酵工业废水、垃圾渗滤液等废水及工业园区集中废水处理厂废水等的处理。
1、芬顿反应原理
1893年,化学家Fenton HJ发现,过氧化氢(H2O2)与二价铁离子的混合溶液具有强氧化性,可以将当时很多已知的有机化合物如羧酸、醇、酯类氧化为无机态,氧化效果十分显著。但此后半个多世纪中,这种氧化性试剂却因为氧化性极强没有被太多重视。但进入20 世纪70 年代,芬顿试剂在环境化学中找到了它的位置,具有去除难降解有机污染物的高能力的芬顿试剂,在印染废水、含油废水、含酚废水、焦化废水、含硝基苯废水、二苯胺废水等废水处理中体现了很广泛的应用。当芬顿发现芬顿试剂时,尚不清楚过氧化氢与二价铁离子反应到底生成了什么氧化剂具有如此强的氧化能力。二十多年后,有人假设可能反应中产生了羟基自由基,否则,氧化性不会有如此强。因此,以后人们采用了一个较广泛引用的化学反应方程式来描述芬顿试剂中发生的化学反应:
Fe2
芬顿氧化法是在酸性条件下,H2O2在Fe2 存在下生成强氧化能力的羟基自由基(·OH),并引发更多的其他活性氧,以实现对有机物的降解,其氧化过程为链式反应。其中以·OH产生为链的开始,而其他活性氧和反应中间体构成了链的节点,各活性氧被消耗,反应链终止。其反应机理较为复杂,这些活性氧仅供有机分子并使其矿化为CO2和H2O等无机物。从而使Fenton氧化法成为重要的高级氧化技术之一。
2、进水水质要求
1. 芬顿氧化法的进水应符合以下条件:
2. 芬顿氧化法进水不符合条件时
应根据进水水质采取相应的预处理措施:
b)进水中溶解性磷酸盐浓度过高时,宜投加熟石灰,通过混凝沉淀去除部分溶解性磷酸盐;
c)进水中含油类时,宜设置隔油池除油;
d)进水中含硫离子时,应采取化学沉淀或化学氧化法去除;进水中含氰离子时,应采取化学氧化法去除;
e)进水中含有其他影响芬顿氧化反应的物质时,应根据水质采取相应的去除措施,以消除对芬顿氧化反应的影响。
芬顿氧化法用于生化处理的预处理时,若进水水质水量变化较大,芬顿氧化工艺前应设置调节池。
3、芬顿的影响因素
1、温度 温度是芬顿反应的重要影响因素之一。一般化学反应随着温度的升高会加快反应速度,芬顿反应也不例外,温度升高会加快·OH的生成速度,有助于·OH与有机物反应,提高氧化效果和COD的去除率;但是,对于芬顿试剂这样复杂的反应体系,温度升高,不仅加速正反应的进行,也加速副反应,温度升高也会加速H2O2的分解,分解为O2和H2O,不利于·OH的生成。不同种类工业废水的芬顿反应适合的温度,也存在一定差异。处理聚丙烯酰胺水溶液处理时,温度控制在30~50。研究洗胶废水处理时发现温度为85。处理三氯(苯)酚时,当温度低于60时,温度有助于反应的进行,反之当高于60时,不利于反应。
2、pH
一般来说,芬顿试剂是在酸性条件下发生反应的,在中性和碱性的环境中Fe2 不能催化氧化H2O2产生·OH,而且会产生氢氧化铁沉淀而失去催化能力。当溶液中的H 浓度过高,Fe3 不能顺利的被还原为Fe2 ,催化反应受阻。多项研究结果表明芬顿试剂在酸性条件下,特别是pH在3~5时氧化能力很强,此时的有机物降解速率快,能够在短短几分钟内降解。此时有机物的反应速率常数正比于Fe2 和过氧化氢的初始浓度。因此,在工程上采用芬顿工艺时,建议将废水调节到=2~4,理论上在为3.5时为佳。
3、有机底物
针对不同种类的废水,芬顿试剂的投加量、氧化效果是不同的。这是因为不同类型的废水,有机物的种类是不同的。对于醇类(甘油)及糖类等碳水化合物,在羟基自由基作用下,分子发生脱氢反应,然后C-C键的断链;对于大分子的糖类,羟基自由基使糖分子链中的糖苷键发生断裂,降解生成小分子物质;对于水溶性的高分子及乙烯化合物,羟基自由基使得C=C键断裂;并且羟基自由基可以使得芳香族化合物的开环,形成脂肪类化合物,从而消除降低该种类废水的生物毒性,改善其可生化性;针对染料类,羟基自由基可以打开染料中官能团的不饱和键,使染料氧化分解,达到脱色和降低COD的目的。用芬顿试剂降解壳聚糖的实验表明当介质pH值3~5,聚糖、 H2O2及催化剂的摩尔比在240:12~24:1~2时,芬顿反应可以使壳聚糖分子链中的糖苷键发生断裂,从而生成小分子的产物。
芬顿工艺在处理废水时需要判断药剂投加量及经济性。H2O2 的投加量大, 废水COD的去除率会有所提高,但是当H2O2投加量增加到一定程度后, COD的去除率会慢慢下降。因为在芬顿反应中H2O2投加量增加,·OH的产量会增加,则COD的去除率会升高,但是当H2O2的浓度过高时,双氧水会发生分解,并不产生羟基自由基。催化剂的投加量也有与双氧水投加量相同的情况,一般情况下,增加Fe2 的用量,废水COD的去除率会增大, 当Fe2 增加到一定程度后。COD的去除率开始下降。原因是因为 当Fe2 浓度低时,随着Fe2 浓度升高,H2O2产生的·OH增加;当Fe2 的浓度过高时, 也会导致H2O2发生无效分解,释放出O2。
4、工艺操作及设计
芬顿氧化法废水处理工程工艺流程主要包括调酸、催化剂混合、氧化反应、中和、固液分离、药剂投配及污泥处理系统,工艺流程示意图见图。
1、调酸
2、催化剂混合
3、氧化反应
氧化反应池池型应根据废水处理规模、占地面积和经济性等因素综合确定,氧化反应池采用塔式时,宜采用升流式反应器,钢结构塔体应采用不锈钢 316L材质和涂衬玻璃鳞片防腐处理。塔式反应器包含芬顿试剂混合区、布水区和反应区。混合区混合速度梯度 G值应不小于 500s-1,布水区应配水均匀,配水孔出口流速应为 1.0m/s~1.5m/s,回流比应不低于 100%。塔式反应器高径比宜在 1.0~5.0 之间,高度应不高于 15 m。
式中:
氧化反应池有效面积可按下式计算:
混合可采用水力搅拌、机械搅拌或空气搅拌,确保混合均匀,防止出现短流和死水区。
4、中和
中和池可采用水力搅拌、机械搅拌或空气搅拌,混合时间不宜小于2min。
5、固液分离
6、药剂投配
芬顿试剂、酸碱试剂、混凝剂、助凝剂等药剂的用量,应根据废水特性,经试验后确定。
芬顿试剂和助凝剂的投加方式宜选择计量泵投加,并安装流量计。芬顿试剂和助凝剂投加系统应包括药剂的储存、调制、输送、计量和投加设施(备)。
7、药剂调制
b)应依据不同溶解度、凝固点合理选择溶药浓度,硫酸浓度应保证该浓度下硫酸凝固点低于冬季最低气温(硫酸凝固点见表1);硫酸亚铁溶药浓度宜按质量百分浓度≤30%配制, 水温较低时宜按质量百分浓度≤20%配制;过氧化氢质量百分浓度宜≤30%;液碱浓度宜≤30%。若调制药品用水碱度较大导致硫酸亚铁结晶,可在溶解时加入适量硫酸以减少溶解池和投配池中的硫酸亚铁结晶沉淀;
质量分数(%) | 0 | 12.5 | 25 | 37.5 | 50 | 62.5 | 75 | 87.5 | 98 |
凝固点() | 0 | -8 | -27 | -70 | -36 | -29 | -40 | -14 | 6 |
c)水力调制的供水水压应大于
d)压缩空气调制可用于水量较大的废水处理厂(站)的药剂调制,曝气强度宜控制在3 L/(m2·s )~5 L/(m2·s);
e)硫酸溶液宜采用成品溶液,避免在污水处理厂内稀释调制。不具备成品供应条件, 需现场调制时,应考虑其腐蚀性及溶解过程的放热,使用专用设备调制;
f)双氧水的储存装置应远离热源、避免阳光直射。
1. 溶液池容积按下式计算:
1
式中:
2. 溶解池容积按下式计算:
5、设备与材料的选择
1、本体
建(构)筑物池体可采用钢筋混凝土结构或钢结构,处理规模较大可采用钢筋混凝土池体,处理规模较小可采用钢结构罐体。
药剂投配系统的设备、管道应根据药剂的性质采取相应的保温或隔热措施。
2、泵阀
药剂投配系统中加药泵等均应采用耐腐蚀材质。其中浓硫酸溶液加药泵过流部件可采用聚四氟乙烯、铸铁材质;双氧水溶液加药泵过流部件可采用 316L型不锈钢材质;硫酸亚铁溶液加药泵过流部件可采用 316L
3、机械搅拌机
4、管道
6、污泥的计算及处置
污泥产生量主要与水量、悬浮物浓度、有机污染物种类和药剂投加量等因素有关。因废水水质不同污泥产生量差别较大,宜通过多组试验确定污泥产量。不具备试验条件时,可按下式估算干污泥产量:
TS=B×(S K1F K2A P)×Q×10-6
式中:
TS——干污泥总量,t/d;S——通过芬顿氧化法去除的悬浮物浓度,mg/L;K1——亚铁盐转化为污泥量的系数,取 1.9,Fe2 与 Fe(OH)3 的换算系数;F——亚铁盐投加量,以 Fe2 计,mg/L;K2——混凝阶段混凝剂转化为污泥量的系数,若采用铝盐,取1.53,Al2O3与 Al(OH)3的换算系数;A——混凝阶段混凝剂的投加量,若采用铝盐,以 Al2O3计,mg/L;P——混凝阶段助凝剂(一般采用 PAM)投加量,mg/L;Q—— 设 计 水 量 ,m3/d;B——安全系数,取 1.1~1.2。
污泥脱水前应加药调理,投加药剂的种类和投药量应根据试验或参照同类型污泥脱水工艺的数据确定。
污泥脱水机选型应根据污泥性质、污泥产量、脱水要求确定,脱水污泥含水率应满足污泥处理及处置的要求。
固液分离系统分离出的污泥不应回流进入生物处理系统。脱水后的污泥应按国家相关规定进行无害化处置。列入《国家危险废物名录》的污泥和经鉴定属于危险废物的污泥,应按照有关规定贮存和处置,其他污泥应按GB18599的规定,因地制宜妥善贮存与处置。