LS-DYNA使用指南-接触

标签:
股票 |
分类: ANSYS |
第六章接触表面
ANSYS/LS-DYNA中的接触表面可以使用户在模型中诸Component之间定义多种接触类型,本章将概要地讲述一下显式动态分析中定义物理上的真实接触。
必须注意的是显式动态分析中的接触与其它类型的ANSYS分析中的接触类型不同,在其它分析中,接触是由实际接触单元表示。而在显式动态分析中没有接触单元。只需定义接触表面,它们之间的接触类型以及相应的参数。
6.1
因为在显式动态分析中会发生复杂的大变形,所以确定模型内component之间的接触是非常困难的。基于此原因,ANSYS/LS-DYNA程序中包含许多功能以使接触表面间的接触定义更容易些。在ANSYS/LS-DYNA中采用
使用
第一步;
第二步:
第三步:
第四步:
第五步:
第一步:定义接触类型
为了充分地描述在大变形接触和动态撞击中的复杂几何体之间的相互作用,在ANSYS/LS-DYNA中引入了许多种接触类型。这些接触类型,包括节点-表面,表面-表面,单面,单边,侵蚀,固连,固连断开,压延筋和刚性体接触,将在本章标题为“接触选项”中详细讨论,对于一般的分析而言,建议使用自动单面(ASSC),自动原则(AG),节点-表面(NTS),表面-表面(STS)接触选项。
第二步:定义接触实体
除单面接触(ASSC,SS和ESS)、自动通用(AG)和单边接触(SE)外,所有的接触类型都必须在发生接触的地方定义contact表面和target表面,这可用节点components, PART
ID
NSEL,S,NODE,....!在球面上选择节点
CM,BALLSURF,NODE!把被选的节点放在component BALLSURF中
NSEL,S,NODE,....!选择球面上的节点
CM,BATSURF,NODE!把被选节点放在component BATSURF中
EDCGEN,NTS,BALLSURF,BATSURF,.25,.23!在组元component BALLSURF和component BATSURF间定义为节点-表面接触。
此外,还可以用有限元模型内当前定义的部件号或部件集合号来定义接触表面。部件集合号可以用
下面的命令行说明了怎样使用
EDCGEN,STS,1,2,.25,.23!在部件1和部件2间生成面面接触
另外,结合PART/部件集合和组元定义,也可以定义接触和目标表面间的接触,表述如下:
EDCGEN,NTS,N1,2,.3,.28!在组元N1和PART2间生成点面接触
EDCGEN,ESTS,1,N2,.15,.15!在PART1和组元N2间生成侵蚀面面接触
EDCGEN,STS,1,1,.1,.1!在PART1间生成面面接触
如下例所述,也可以用
EDCGEN,STS,5,6,.3,.28!在部件集合5和6间生成面面接触
在一些特定的单面接触类型(ASCC,AG,ESS,和SS)中无需定义contact和target表面,在本章后面将提及到,单面接触时最常用的接触类型,模型的全部外表面在整个分析中任一点都可能发生接触。程序在单面接触中将忽略任何contact和target表面的定义,并在执行
EDCGEN,ASSC,,,.34,.34!在整个模型中生成自动单面接触
注
第三步:定义摩擦系数参数
接触摩擦系数是由静态摩擦系数(FS),动摩擦系数(FD),和指数衰减系数(DC)来确定的。(FS,FD和DC可以用
http://www.simwe.com/uploadfile/2011/0706/20110706112301979.jpg
第四步:给定附加输入
对于侵蚀,刚性体,固连断开和压延筋接触,还需输入一些其它数据(
采用侵蚀表面接触(ENTS,ESS和ESTS)时,当表面实体单元发生失效时,需要在内部剩余单元重新定义接触。对于侵蚀接触,V1-V3定义如下:边界条件对称选项(V1)决定当单元表面失效时沿一个表面是否仍然保持对称性;内部侵蚀选项(V2)决定当外表面发生失效时沿内表面是否接着发生侵蚀;相邻材料选项(V3)决定当沿着自由表面发生失效时是否包括实体单元面。
刚性体接触(RNTR和ROTR)通常用于多刚体动力学,在刚性体接触中,采用一条用户定义防止贯穿的力-挠度曲线,而不用线性刚度。因此,对于刚性体接触,数据曲线号(V1),用于给定刚性体接触的力计算方法类型选项(V2)和卸载刚度值(V3)必须输入。
固连断开接触(TSTS和TNTS)用于表面胶合在一起时定义接触表面失效。对于所有固连断开接触类型,需输入拉伸失效应力(V1)和剪切失效应力(V2)定义失效准则。对于节点-表面固连断开接触。法向力指数项(V3)和剪切力指数项(V4)也需输入以定义失效准则。
压延筋接触(DRAWBEAD)用于模拟压延筋的特殊情况,压延筋在深拉作业时有助于约束坯料。在压延筋接触中,必须输入一条载荷曲线号(V1),它给出作为压延筋位移函数的约束力弯曲分量,可以任选一条曲线号(V2),它给出作为压延筋位移函数的法向约束力以及沿压延筋的等距积分点数(V4)。
第五步:定义激活或杀死时间
对于每个接触定义,都可以用
6.1.1
用
当前显式动态接触实体
1一般的面面接触:节点接触实体N1,结点目标实体N2
FS=0.10000FD=0.08000DC=0.00000VC=0.00000VDC=0.0000
2
FS=0.20000FD=0.15000DC=0.00000VC=0.00000VDC=0.0000
用户可以采用
注
如果接触定义不正确,可以用
在小型重启动分析中不能删除接触实体(
显式动态全启动分析不支持
6.2
为了充分定义在显式动态分析中表面间的复杂相互作用,在ANSYS/LS-DYNA中有24种接触类型(见下表)。在大量的接触类型中,需要用户对每一种接触类型都很了解,以便能正确地选用接触类型。因此,下面我们将讨论一下ANSYS/LS-DYNA中所有的接触类型。
6.1 接触类型
Single surface |
Nodes to surface |
Surface to surface |
|
Normal |
SS |
NTS |
STS, OSTS |
Automatic |
ASSC, AG, ASS2D |
ANTS |
ASTS |
Rigid |
RNTR |
ROTR |
|
Tied |
TDNS |
TDSS, TSES |
|
Tied with failure |
TNTS |
TSTS |
|
Eroding |
ESS |
ENTS |
ESTS |
Edge |
SE |
||
Drawbead |
DRAWBEAD |
||
Forming |
FNTS |
FSTS, FOSS |
6.2.1
从表6.1中看出,在ANSYS/LS-DYNA程序中主要有三种基本接触类型:单面接触,节点-表面接触,表面-表面接触。
1.单面接触(SS,ASSC,AG,ASS2D,ESS)
单面接触用在一个物体表面的自身接触或它与另一个物体表面接触,在单面接触中,ANSYS/LS-DYNA程序将自动判定模型中哪处表面发生接触。因此,单面接触的定义是最简单的,无需定义contact和target表面,当定义好单面接触时,它允许一个模型的所有外表面都可能接触,这对于预先不知道接触表面的自身接触或大变形问题很有用处。与隐式模型过多定义接触面将大大增加CPU时间不同,在显式模型中定义单面接触只会较少的增加CPU时间,许多碰撞和撞动态碰撞问题都需定义单面接触。由于自动通用接触(AG)很有效,它包括壳边接触(SE)和改进的梁接触,因此,推荐你在难以预测接触条件时,对于自身接触和大变形问题优先选择此种接触类型。
2.点-面接触(NTS,ANTS,RNTR,TDNS,TNTS,ENTS,DRAWBEAD,FNTS)
点面接触类型是接触节点将穿透target表面。这种接触类型通常用于一般两个表面间的接触。采用ANSYS隐式程序中同样的规则,需要定义target表面及contact表面。
·平面或凹面为target表面,凸面为contact表面
·粗网格所在面作为target面,细网格所在面为contact面
在定义压延筋接触时,筋总为contact表面,而板料为target表面。
3.面-面接触(STS,OSTS,ASTS,ROTR,TDSS,TSTS,ESTS,SE,FSTS,FOSS,TSES)
当一个物体的表面穿透另一个物体的表面时需使用面-面接触,面-面接触类型是最常用的,并且常用于任意形状且存在较大接触面积的物体接触。这种接触类型对于物体间有大量相对滑移时很有效,例如块在平板上滑动,球在槽内滑动等。
6.2.2
对于以上三种接触类型的每一种又含有多个接触类型选项,在ANSYS/LS-DYNA中,可用以下几个选项:
1.通用接触(SS,NTS,STS,OSTS)
虽然通用接触的算法最简单,但它的使用范围仍很广。实际上,ANSYS/LS-DYNA三种接触选项中有两种是NTS和STS选项。使用通用接触最大的优点在于它们的速度很快并且很可靠。使用该种类型时,只需关心接触表面的取向,接触表面方向是指定义一个面的哪一边是实体和哪一边是“空气”。当使用实体单元时,程序自动为通用接触类型正确定向,而对于壳单元的接触,用户必须自己定义表面方向,在
2.自动接触(ASSC,AG,ASS2D,ANTS,ASTS)
与通用接触类型一样,自动接触也是使用最广泛的接触。自动接触和通用接触间的主要差别就是它能通过自动接触算法自动确定壳单元的接触表面方向。在该选项中,将会检查壳单元每个面的接触,因此,通常会限制搜索深度。如果考虑到接触表面的穿透,可以使用无限或者大搜索深度的普通接触。参见本章后面的6.5节,
3.侵蚀接触(ESS,ENTS,ESTS)
侵蚀接触用于一个或两个表面的单元在接触时发生材料失效。接触依然可在剩余单元中进行。它用于实体单元穿透或是表面产生失效贯穿问题等。使用此选项,必须在
4.刚性接触(RNTR,ROTR)
刚性体接触和通用接触中的NTS和OSTS相类似,区别在于它采用一条用户自定义的力-挠度曲线而不是线性刚度来防止穿透。这种类型的接触最典型的应用是多个刚体间的相互接触。刚性体接触的最大优点在于它们可以包括能量吸收而无需用变形单元建模。
5.固连接触(TDNS,TDSS,TSES)
固连接触选项实际上是把接触节点(表面)和目标表面“粘合”起来,接触和目标表面开始必须共面,于是初始化时,程序会计算contact节点(表面)在target部分内的等参数位置。然后,在载荷或初始速度的作用下,contact节点(表面)须在目标表面内保持它们的等参数位置。固连接触的效果就是target表面可以变形,而contact节点将追随其变形。定义固连接触时,较粗网格的物体需定义为target表面。只有平移自由度(UX,UY,UZ)才会受固连接触的影响。
6.断开接触(固连失效)(TNTS,TSTS)
固连断开接触与固连接触的区别在于contact节点(表面)仅在达到失效准则前和target表面固连在一起。利用一个罚刚度使得contact节点(表面)与target表面实现“销连接“;在达到失效准则后,接触节点(表面)可以相对于目标表面滑动或与之分离。固连断开接触的典型应用是焊点和螺栓连接。TNTS和TSTS间的主要区别就是TSTS失效与失效应力有关而TNTS则与失效力有关。使用TSTS时,需用
http://pera.e-works.net.cn/NewsImages/ls6image026.gif
http://pera.e-works.net.cn/NewsImages/ls6image028.jpg
7.边接触(SE)
单边接触用于发生在垂直于壳表面法线方向的接触中。该接触选项不需要定义接触或目标表面,常用于表面法向垂直于撞击方向的薄板成形工艺中。
8.压延筋接触(DRAWBEAD)
压延筋接触用于金属成形工艺中,它需特别注意坯料的约束。在拉延和冲压模拟时,板料与成形表面脱离的现象是很常见的。压延筋接触要求使用弯曲和摩擦约束力,用来保证板料在整个压延筋厚度尺寸上保持接触。
9.成形接触(FNTS,FSTS,FOSS)
成形接触主要用于金属成形工艺。对这些接触类型来说,工具和模具定义为目标面(master),而工作部分定义为接触面(slave)。这个选项不需用网格连接,但工具的网格必须在同一方向。由于该选项基于自动接触类型,因此在金属成形应用中非常有效。
http://pera.e-works.net.cn/NewsImages/ls6image030.jpg
6.3
在ANSYS/LS-DYNA中,有两种接触算法用来确定发生接触的接触面和目标面,简述如下:
6.3.1
在网格连接跟踪中,接触搜索算法用相邻单元片的共享节点去识别可能出现的接触域。因此,当一个目标片不再和接触表面节点接触时,就可以检验相邻的单元片。网格连接跟踪方法是非常有益的,因为它速度快;但也有缺点,它要求网格连续,以确保算法正确。因此,对不同的区域,必须设置不同的接触。NTS,OSTS,TSTS,TNTS和TDNS接触选项使用网格连接方法。但是,通过设置
6.3.2
除了上述提及到的接触类型外,所有的接触都使用批处理方法,就是把target表面按区域分成很多批。Contact节点可以和同一批或相邻批中任意的target接触。批处理方法很可靠,但是当target表面的单元数较多时,它要比网格连接跟踪法慢。
6.3.3
通过定义一个接触箱区域,用户可以把整个区域限制在一个接触搜索域内。定义一个接触箱后,接触搜索就会在箱体坐标指定的范围内执行。它的一个优点就是当预先知道两个物体的潜在接触面积时,可以使CPU时间消耗降到最少。当用部件或部件集合定义接触时,此选项才有效。接触箱用
EDBX
Option
BOXID用户定义的ID号
XMIN最小x坐标
XMAX最大 x坐标
YMIN最小y坐标
YMAX最大y坐标
ZMIN最小z坐标
ZMAX最大z坐标
一旦定义后,一个BOXID可以在
(http://pera.e-works.net.cn/document/200707/article1207_1.htm)