加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

《圆周率的历史》教学设计

(2021-04-13 15:24:23)
标签:

教育

分类: 教学设计


【教材分析】

教材是在学生通过简单试验初步体验了圆周率和利用圆周率计算圆的周长之后安排了这个数学阅读内容,为学生展示了圆周率的研究简史,介绍了相关的圆周率的研究方法,为学生打开了一扇窥视数学文化发展史的窗户,为进一步理解圆周率的意义,及今后中学的相关数学学习,留下一片想象的空间。教材罗列了在圆周率研究历史中最为重要的人物及方法,从古至今,涵盖中外,以圆周率的探索过程为主线,以体现圆周率的文化价值为主格调,来满足孩子们的好奇心,通过阅读来挖掘圆周率蕴含的教育价值,感受数学的魅力,激发研究数学的兴趣。

本阅读内容信息量大、数学术语多、理解困难。涉及到圆的内接、外切正多边形、割圆术、勾股定理、投针试验等数学术语,在给学生带来大量信息的同时,也为他们带来了大量的疑问,但这些疑问并非本节课的重点,重点在于阅读——熏陶

【学生分析】

学生在接触这部分内容之前,在圆的周长部分进行了简单的圆周率的测量试验研究时,部分同学已经了解了祖冲之的相关成就,然而对阿基米德和刘徽的成就知之甚少,对投针试验基本上没有听说过;另外,学生的了解一般停留在简单的知识常识上,对于圆周率的计算研究方法及其蕴含的数学思想很少涉及。

作为六年级的学生,他们运用图书、网络搜集信息的能力非常强,对于这部分阅读资料的兴趣浓厚,许多学生都已经迫不及待的阅读、查阅。因此,不妨把阅读任务下放到课外,把搜集圆周率的历史资料作为课前实践作业,把课堂作为交流、释疑的平台。

【学习目标】

知识与技能:阅读圆周率的发展简史,感受数学知识的探索过程, 了解圆周率的研究史上的相关知识及做出重要贡献的人物和研究方法。

过程与方法:通过自主搜集圆周率的相关资料、交流体验,培养收集信息、整合信息,提高质疑、理解的能力。在阅读理解过程中,体验数学研究方法发展的过程、极限思想、圆周率精确位数的现代价值等,为今后的数学学习提供一定的参考价值。

情感态度价值观:通过阅读圆周率的历史,体验数学文化的魅力,激发研究数学的兴趣,在阅读刘徽、祖冲之的相关成就时激发民族自豪感。

【教学过程】

(一)交流搜集到的信息

师:回忆一下,怎样计算一个圆的周长?

师:在计算圆的周长的时候,需要用到圆周率。说到圆周率,我们知道它是圆的周长和直径之间固定的倍数关系,这是一个无限不循环小数,这么复杂的一个数,它是怎么来的呢?是一个人研究的结果吗?都有哪些研究方法呢?人们什么时候就发现了圆周率?圆周率发展的历史是怎么样的呢?……许多同学早就阅读了课本上的关于圆周率的历史资料,昨天也回去搜集了关于圆周率历史的信息,拿出来,让我们来交流一下搜集到的信息吧!

学生分小组交流信息,教师板书:圆周率的历史

(二)分享所搜集的信息

师:我们收集到的资料可能各不相同,让我们来一同分享吧!

师:圆周率的研究历史经历的时间是很长的,我们搜集到的信息也是很丰富的,老师建议让我们这样来分享这些信息吧:把圆周率的历史分为三个时期——测量计算时期、推理计算时期、新方法时期,可以吗?

师:那大家先分小组商量一下怎么汇报,推荐代表,比一比,哪个小组汇报得清楚。

学生分小组商量,教师板书:实际测量时期、推理计算时期、新方法时期

师:在汇报的时候请介绍清楚代表人物、基本方法、大约年代、主要结论。

1.测量计算时期

师:哪个小组来介绍第一个时期——测量计算时期?

小组代表1:人们很早就注意到了圆周率。大约在2000多年前,中国的《周髀算经》就有介绍。方法是通过轮子转一圈的长度,观察到圆的周长和直径之间有一定的联系,通过测量、计算出圆的周长总是直径的3倍多。

掌声响起。

师:还有补充吗?

1:《周髀算经》中的记载是径一周三

2:那时候的圆周率一般都采用3来计算圆的周长。

3:基督教中的《圣经》也把圆周率取为3

师:谢谢你们的及时补充,不过,什么叫径一周三?搜集信息的时候考虑过吗?

4:就是一个圆,就是周长,指的是直径,它的周长是3份的话,直径就是1份。

5:哦,也就是一个圆的周长大约是直径的3倍。

师:我国的《周髀算经》比《圣经》要稍微早一些,不过在大约公元前950年,中国、印度、巴比伦几乎都在使用3这个数值来表示圆周率,人们对于圆周率的研究真够早的。

师:看看他们的研究方法,好像我们曾经用过。

6:是的,我们在研究圆的周长的计算方法的时候,也是测量几个圆的周长,再除以直径,都是三倍多一些。

(教师板书:研究方法:观察、测量、计算,研究结论:径一周三)

2.推理计算时期

师:第二个时期。

小组代表2:我来汇报推理计算时期。我们收集到的信息是几何法时期。代表人物有古希腊的阿基米德、中国的刘徽、祖冲之。阿基米德用的方法是利用圆内接正多边形和圆的外切正多边形进行研究;刘徽用的是割圆术;祖冲之用的方法已经不是很清楚了。[

师:能介绍一下,他们的成绩或者是结论吗?

小组代表3:我们小组可以介绍!阿基米德在《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为: π ,这是数学史上最早的,明确指出误差限度的π值;刘徽得到圆周率的近似值是3.14;祖冲之算出π的值在3.14159263.1415927之间,并且得到了π的两个分数形式的近似值约率为 《圆周率的历史》教学设计 ,密率为 《圆周率的历史》教学设计

师:他们的年代?

小组代表5:我们小组来介绍,阿基米德和刘徽大约是同时代的人,不过阿基米德研究圆周率的时间比刘徽稍微早一些,但刘徽运用的方法和他不同。祖冲之大约在1500多年前。

师:他们三个人对于圆周率的贡献是很大的,在数学的历史上书写了浓墨重彩的一笔,刘徽和祖冲之也是我们中国的骄傲,大家想一想,祖冲之把圆周率精确到小数点后7位,这一成就在世界上领先了约1000年!

师:让我们来看看书上对于他们的介绍吧。

学生阅读教材第14页至15页关于阿基米德、刘徽和祖冲之的介绍。

师:在分享知识的同时,有问题一起分享、一起思考吗?

7:祖冲之的成就中有一个名词叫约率,还有,什么叫密率

师:祖冲之的成就虽然在1500多年前,但在现在仍然值得我们去慢慢推敲,让我们和这位同学一起看看祖冲之的这两个名词吧。

学生阅读。

8:老师,我想约率应该是粗略的圆周率的意思吧,密率就是比较精确的圆周率。

同学们纷纷表示同意。

师:和真的都接近圆周率吗?让我们算一算,好吗?

男生计算、女生计算的小数值。通过计算发现确实非常接近。

师:能写出一个特别接近圆周率的分数,是一件非常有意思的事。

9:不是很理解他们用的方法。

师:是啊,他们究竟用什么样的方法,能不需要测量就能计算圆周率呢?

教师展示多媒体课件:

阿基米德的方法:出示圆的内接六边形、外切正六边形图形;接着出示圆的内接正十二边形、外切正十二边形图形。

师:圆的周长处于内外两个正六边形之间,同样,也会处在内外两个正十二边形之间,这样,越来越接近圆的周长。

刘徽的方法:

《圆周率的历史》教学设计[小精灵儿童网站]

他由圆内接正六边形算起,逐渐把边数加倍,算出正12边形、正24边形、正48边形、正96边形……的面积,这些面积会逐渐地接近圆面积。这是一种非常重要的数学思想。按照这样的思路,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率 3.14 3.1416这两个近似数值。

师:祖冲之用什么方法得到那么精确的圆周率,已经很难知道了,但可以肯定刘徽的方法给了他很大的启发和影响。

3.新方法时期

师:刘徽和祖冲之的方法,是不是就可以这样一直推下去呢?

10:应该可以。

11:可能不行,不然为什么一千多年没有再发展呢?

师:由于计算工具的限制,可以说,祖冲之的成就已经把圆周率的精确程度推倒了极致,计算量太大了。但是,随着电子计算机的出现,这个问题顺利解决了,π小数点后面的精确数字发展到成千上万、甚至几万亿位。有些人还用圆周率来锻炼记忆能力呢。

师:另外,聪明的数学家还利用似乎与圆不相关投针的方法来计算圆周率,竟然和祖冲之的结果基本接近!让我们来欣赏一下圆周率的新方法时期吧。

学生看书第15页,投针试验电子计算机的革命部分。

师:怎么样?有什么想说的?

12:电子计算机给我们解决了复杂的计算问题,数学家们主要就负责方法就可以了。

13:这投针试验究竟是怎么回事?

许多学生表示同样的疑问。

多媒体课件演示布丰的投针试验

(三)让我们来分享感受

师:我们还有许多感受没有说出来,也还有许多信息没有听到,让我们再次分享各自获得的信息和感想吧!

 

 

 

五、教学反思

《数学阅读》在课程改革之前的教材中从未涉及,就是在课程改革之后的教材中也很少安排。在和学生对圆周率的历史的共同解读之后,有了许多收获,也留下了一些思考:

1.丰富的内容,让学生学会获取

这部分内容丰富,他们也非常感兴趣,同时,作为现代的孩子,他们也有能力利用网络、书籍等自主获取圆周率历史的相关知识。事实证明,他们可以获得相关的大部分资料。

2.大量的信息,让学生学会分享

圆周率历史的信息量非常大,一个人获取的信息可能各有不同,此外,学生的获取信息的能力也各有差异,他们需要分享。在本节课中,我把分享作为主线,给他们设计好分享的步骤,主持分享的过程。他们在分享中互相学习,了解圆周率的历史、数学思想、民族自豪感……

3.深奥的数学思想和知识,需要怎样的引导和解释

在圆周率的历史中,涉及到许多深奥的数学思想和知识,有极限思想、概率思想、外切、内接、勾股定理等,虽然本节课的重点在感受圆周率的这一历史文化,但这些深奥的数学思想和知识,他们不会熟视无睹,他们渴望了解。因此,我准备了多媒体资料,给他们适当了解的机会,但学生在接触的过程中,似乎明白了一些,但也有一部分学生感觉疑问越来越多,怎样的引导才更为

 

 

 

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有