加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

正弦函数的性质教学设计

(2014-04-08 07:49:25)
标签:

教育

分类: 2013市小课题

   正弦函数的性质教学设计

西安市第五十五中学   张红梅

一、  教学目标:

1、    知识与技能

(1)熟练五点法画正弦函数的图像;

2)利用图像进一步研究和理解正弦函数的定义域、值域、周期性、最大(小)值、单调性、奇偶性、对称性;

3)能熟练运用正弦函数的性质解决相关问题,感受数形结合的思想,提高学生分析问题、解决问题的能力。

2、    过程与方法

通过正弦函数在R上的图像,让学生探索出正弦函数的性质;讲解例题,总结方法,巩固练习。体验数形结合。

3、    情感态度与价值观

通过本节的学习,培养学生创新能力、探索归纳能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;使学生认识到转化“矛盾”是解决问题的有效途经;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。

二、教学重、难点

重点: 正弦函数的性质,重点是单调性和最值。

难点: 正弦函数的性质应用。

三、学法与教学用具

在正弦函数的图像中,直观判断出正弦函数的性质,并能上升到理性认识;理解掌握正弦函数的性质;以学生的自主学习和合作探究式学习为主。

教学用具:投影机、三角板

四、教学过程

(一)【创设情境,引入新课】

同学们,在上一节课中,我们已经学习了正弦函数的ysinxR上图像,通常我们采用什么方法画正弦函数的图像?(学生活动:学生思考,并回答:五点法)

教师继续提出是哪五个点呢?先利用五点法作出正弦函数ysinx在区间 上的图像,再利用“终边相同的角的三角函数值相等”的性质得到正弦函数ysinxR上图像,通过左、右平行移动,每次平移2p个单位长度,今天我们就利用图像研究正弦函数的性质。引入新课

在必修一的学习中我们知道研究函数的性质时,主要从哪个角度来研究

(学生活动:有一名学生回答,定义域、值域、单调性、奇偶性、对称性)教师补充:前面学到的周期性。

(二)【师生互动,探究新知】

 

x

6p

y

o

-p

-1

2p

3p

4p

5p

-2p

-3p

4p

1

p

让学生一边看投影,一边仔细观察正弦曲线的图像,并思考以下几个问题:

 

 

 

 

(1)       正弦函数的定义域是什么?

(2)       正弦函数的值域是什么?

(3)       它的最值情况如何?

(4)       它的单调性如何分?

(5)       它的对称性呢?周期性呢?

师生一起归纳得出:

1.      定义域:y=sinx的定义域为R

2.       值域:引导回忆单位圆中的正弦函数线,结论:|sinx|1(有界性)

   再看正弦函数线(图象)验证上述结论,所以ysinx的值域为[-11]

3.最值:1°对于ysinx  当且仅当x2kp ,kÎZymax1

当且仅当时x2kp, kÎZymin=-1

2°2kpx(2k+1)p  (kÎZ)ysinx0

(2k-1)px2kp  (kÎZ)ysinx0

(学生活动:思考为什么用2kp+ 来表示函数取最大值时的x值,因为函数取最大值时,x可取 , 等等故取代表性的离坐标轴近的,如果一样近,优先考虑正值,然后再加周期2kp。让学生轻松地解决了疑虑,在后面的表示中会感受到成功的喜悦)

4.周期性:(观察图象) 1°正弦函数的图象是有规律不断重复出现的;

2°规律是:每隔2p重复出现一次(或者说每隔2kp,kÎZ重复出现)

3°这个规律由诱导公式sin(2kpx)sinx也可以说明

结论:ysinx的最小正周期为2p  

5.奇偶性

1)从解析式角度看:对于任意的 都有

sin(x)=-sinx  (x∈R)                ysinx  (x∈R)是奇函数

2)从图像角度看:图像关于原点对称             ysinx  (x∈R)是奇函数

(学生活动:让学生思考如何判断函数的奇偶性,并由一名学生代表说明正弦函数的奇偶性)

6.单调性

(学生活动:教师出示讨论提纲,

学生分组交流讨论正弦函数的单调性,并交流自己的想法及疑问,尤其是单调区间的表示)

教师设计的小组交流提纲为:

 1)、正弦函数在定义域上是单调函数吗?

 2)、正弦函数在定义域上如果不是单调函数,在哪个区间上单调,如果是单调函数,写出它的单调区间。

讨论的结果为:增区间为[- +2kπ, +2kπ]k∈Z),其值从-1增至1

减区间为[2kπ, +2kπ]k∈Z),其值从1减至-1

 7、对称性

   (学生活动 学生观察图像,发现正弦曲线既是轴对称图形,又是中心对称图形,自主思考正弦曲线的对称轴及对称中心,然后,全班交流)

对称轴:直线x+ kp, kÎZ

对称中心:(kp0),kÎZ

(三)【知识迁移,拓展应用

1:设sinx=t-3xR,求t的取值范围。(设计的意图:利用函数的最值来解决问题,将sinx当做一个整体,满足

分析:由 ,并且sinx=t-3

所以t的取值范围为

(为了让学生理解掌握最值设置了以下练习,要求学生独立完成)

练习:在实数范围内下列方程是否有解?

12sinx=3

2sin2x=0.5

2  确定下列函数的最值并求出相应的x值。

1 y=2sinx

2y=sinx+2

3 y=-sinx

(设计意图,在例1和练习的基础上通过本题掌握最值时的相应x的取值)

3 求下列函数的单调区间:

(1) y=3sinx+1

解:单调增区间为[- +2kπ, +2kπ]

 

单调减区间为[ 2kπ, +2kπ]k∈Z),

(2) y=2sin(-x )

解:y=2sin(-x ) = -2sinx

函数的单调增区间为

  

 函数的单调减区间为

(设计意图,为了使学生熟练利用图像确定函数单调区间的方法,推线数形结合)

练习

 

 

 

 

 

 

 

 

 

 


4                               

解:要使函数有意义必须满足

 

 

 

 


(设计意图:通过本题,考察学生对正弦函数的对称性的理解。

(四)、反思总结,共同提升

1)请学生回顾本节课所学过的知识内容有哪些?所涉及的主要数学思想方法有哪些?

2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

3)你在这节课中的表现怎样?你的体会是什么?

(五)知识巩固,提升能力

布置作业:1、作业:习题1—5    345

    2、思考:

 

    3、预习:余弦函数的图象与性质

 

五、课后反思

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有