坡度计算

标签:
杂谈 |
http://bbs.esrichina-bj.cn/ESRI/attachment.php?aid=NzkwMDJ8MmMzZmQ5ZTN8MTMxODIwNjg0NHw1NTY3M2M4emRhZ0FReTl4UmNlcWNYVExQaEFJZ1VSK2V1ZHZIekh5aURvbGFydw==&noupdate=yes
http://bbs.esrichina-bj.cn/ESRI/attachment.php?aid=MTA5NTYwfDlmMmQ4NzMzfDEzMTgyMDYzMDB8ODM4MGkrdXFQV2l3TUc2eE8vZEtNOW9FRHk2TVpoenVLUHNLcHJZMnZNLy9rdDQ=&noupdate=yes
http://bbs.esrichina-bj.cn/ESRI/attachment.php?aid=MTA5NTYxfGQwZTViN2YzfDEzMTgyMDYzMDB8ODM4MGkrdXFQV2l3TUc2eE8vZEtNOW9FRHk2TVpoenVLUHNLcHJZMnZNLy9rdDQ=&noupdate=yes
地球椭球体(Ellipsoid) 地球椭球体有长半径和短半径之分,长半径(a)即赤道半径,短半径(b)即极半径。f=(a-b)/a为椭球体的扁率,表示椭球体的扁平程度。由此可见,地球椭球体的形状和大小取决于a、b、f ArcGIS(ArcInfo)桌面软件中提供了30种地球椭球体模型;常见的地球椭球体数据见下表: |
表1 |
对地球椭球体而言,其围绕旋转的轴叫地轴。地轴的北端称为地球的北极,南端称为南极;过地心与地轴垂直的平面与椭球面的交线是一个圆,这就是地球的赤道;过英国格林威治天文台旧址和地轴的平面与椭球面的交线称为本初子午线。以地球的北极、南极、赤道和本初子午线等作为基本要素,即可构成地球椭球面的地理坐标系统(A and a datum (based on a spheroid).) 地理坐标系统以本初子午线为基准(向东,向西各分了1800)之东为东经其值为正,之西为西经其值为负;以赤道为基准(向南、向北各分了900)之北为北纬其值为正,之南为南纬其值为负。 |
大地基准面(Geodetic
datum) 大地基准面(Geodetic datum),设计用为最密合部份或全部大地水准面的数学模式。它由椭球体本身及椭球体和地表上一点视为原点间之关系来定义。此关系能以 6个量来定义,通常(但非必然)是大地纬度、大地经度、原点高度、原点垂线偏差之两分量及原点至某点的大地方位角。 让我们先抛开测绘学上这个晦涩难懂的概念,看看GIS系统中的基准面是如何定义的,GIS中的基准面通过当地基准面向WGS1984的转换7参数来定义,转换通过相似变换方法实现,具体算法可参考科学出版社1999年出版的《城市地理信息系统标准化指南》第76至86页。假设Xg、Yg、Zg表示WGS84地心坐标系的三坐标轴,Xt、Yt、Zt表示当地坐标系的三坐标轴,那么自定义基准面的7参数分别为:三个平移参数ΔX、ΔY、ΔZ表示两坐标原点的平移值;三个旋转参数εx、εy、εz表示当地坐标系旋转至与地心坐标系平行时,分别绕Xt、Yt、Zt的旋转角;最后是比例校正因子,用于调整椭球大小。 那么现在让我们把地球椭球体和基准面结合起来看,在此我们把地球比做是“马铃薯”,表面凸凹不平,而地球椭球体就好比一个“鸭蛋”,那么按照我们前面的定义,基准面就定义了怎样拿这个“鸭蛋”去逼近“马铃薯”某一个区域的表面,X、Y、Z轴进行一定的偏移,并各自旋转一定的角度,大小不适当的时候就缩放一下“鸭蛋”,那么通过如上的处理必定可以达到很好的逼近地球某一区域的表面。 因此,从这一点上也可以很好的理解,每个国家或地区均有各自的基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的1975地球椭球体(IAG75)建立了我国新的大地坐标系--西安80坐标系,目前大地测量基本上仍以北京54坐标系作为参照,北京54与西安80坐标之间的转换可查阅国家测绘局公布的对照表。 克拉索夫斯基(Krassovsky)、1975地球椭球体(IAG75)、WGS1984椭球体的参数可以参考常见的地球椭球体数据表。 椭球体与基准面之间的关系是一对多的关系,也就是基准面是在椭球体基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面。地球椭球体和基准面之间的关系以及基准面是如何结合地球椭球体从而实现来逼近地球表面的可以通过图2一目了然。 |
投影坐标系统(Projected
Coordinate
Systems 地球椭球体表面也是个曲面,而我们日常生活中的地图及量测空间通常是二维平面,因此在地图制图和线性量测时首先要考虑把曲面转化成平面。由于球面上任何一点的位置是用地理坐标(λ,φ)表示的,而平面上的点的位置是用直角坐标(χ,у)或极坐标(r,
Projection:
Gauss_Kruger
从参数中可以看出,每一个投影坐标系统都必定会有Geographic Coordinate System(地理坐标系统)。那么我们从这一角度上解释一下投影和投影所需要的必要条件:将球面坐标转化为平面坐标的过程便是投影过程;投影所需要的必要条件是:第一、任何一种投影都必须基于一个椭球(地球椭球体),第二、将球面坐标转换为平面坐标的过程(投影算法)。简单的说投影坐标系是地理坐标系+投影过程。
让我们从透视法(地图投影方法的一种)角度来直观的理解投影,图2。
几何透视法是利用透视的关系,将地球体面上的点投影到投影面(借助的几何面)上的一种投影方法。如假设地球按比例缩小成一个透明的地球仪般的球体,在其球心或球面、球外安置一个光源,将球面上的经纬线投影到球外的一个投影平面上。
投影既然是一种数学变换方法,那么任何一种投影都存在一定的变形,因此可以按照变形性质将投影方法如下分类:等角投影(Conformal
|
接下来我们来看看我们国家通常采用的投影——高斯—克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。德国数学家、物理学家、天文学家高斯(Carl Friedrich
Gauss,1777一
分带时既要控制长度变形使其不大于测图误差,又要使带数不致过多以减少换带计算工作,据此原则将地球椭球面沿子午线划分成经差相等的瓜瓣形地带,以便分带投影。通常按经差6度或3度分为六度带或三度带。六度带自
0度子午线起每隔经差6度自西向东分带,带号依次编为第
1、2…60带。三度带是在六度带的基础上分成的,它的中央子午线与六度带的中央子午线和分带子午线重合,即自
1.5度子午线起每隔经差3度自西向东分带,带号依次编为三度带第 1、2…120带。我国的经度范围西起
73°东至135°,可分成六度带十一个,各带中央经线依次为75°、81°、87°、……、117°、123°、129°、135°,或三度带二十二个。
在${ArcGISHome}\Coordinate Systems\Coordinate Systems\Projected Coordinate Systems\Gauss Kruger\Beijing 1954目录中,我们可以看到四种不同的命名方式: Beijing 1954 3 Degree GK CM 75E.prj 对它们的说明分别如下: 三度分带法的北京54坐标系,中央经线在东75度的分带坐标,横坐标前不加带号 三度分带法的北京54坐标系,中央经线在东75度的分带坐标,横坐标前加带号 六度分带法的北京54坐标系,分带号为13,横坐标前加带号 六度分带法的北京54坐标系,分带号为13,横坐标前不加带号 在Coordinate Systems\Projected Coordinate Systems\Gauss Kruger\Xian 1980目录中,文件命名方式又有所变化: Xian 1980 3 Degree GK CM 75E.prj 西安80坐标文件的命名方式、含义和北京54前两个坐标相同,但没有出现“带号+N”这种形式,为什么没有采用统一的命名方式?让人看了的确有些费解,大家在应用过程中需要特别注意一下。 坐标系统和投影变换在桌面产品中的应用
\data\World\目录下的world30.shp数据来做一个实验说明。 乡镇.shp数据的坐标系统为北京54投影坐标系(Krasovsky_1940_Transverse_Mercator)。在ArcMap或ArcCatalog中预览形态如图7所示:
而在ArcMap中先加载北京54坐标系数据后再加入WGS84坐标系数据,让ArcMap对WGS84坐标系数据进行动态投影后两数据叠加显示效果如图9所示: 可以非常明显的看到ArcMap对WGS84数据做完动态投影后的数据几何形态上的改变,并且此时从ArcMap右下角的状态栏上也可以看到当前Data Frame(工作空间)的坐标系统为北京54平面投影坐标系统。 反之在ArcMap中先加载WGS84坐标系数据后再加入北京54坐标系数据,让ArcMap对北京54坐标系数据进行动态投影后两数据叠加显示效果如图10所示: |