Geometric Brownian Motion (几何布朗运动)
标签:
geometric-brownian-mito's-processgmb教育几何布朗运动 |
分类: 应用经济学_统计计量 |
A 随机过程St在满足一下随机微分方程
这里http://upload.wikimedia.org/wikipedia/zh/math/b/7/2/b72bb92668acc30b4474caff40274044.png
几何布朗运动的特性
给定初始值
对于任意值 t,这是一个
- http://upload.wikimedia.org/wikipedia/zh/math/9/d/e/9de4e6a91d990ab09287ece5f4b22246.png
- http://upload.wikimedia.org/wikipedia/zh/math/3/b/3/3b33649de1d464a46e50107052491bef.png
也就是说St的概率密度函数是:
根据伊藤引理,这个解是正确的。
When deriving further properties of GBM, use can be made of the SDE of which GBM is the solution, or the explicit solution given above can be used. 比如,考虑随机过程 log(St). 这是一个有趣的过程,因为在布莱克-舒尔斯模型中这和股票价格的对数回报率相关。对f(S) = log(S)应用伊藤引理,得到
于是http://upload.wikimedia.org/wikipedia/zh/math/2/0/f/20f2e9dae0d55e5138df249168217ee8.png.
这个结果还有另一种方法获得:applying the logarithm to the explicit solution of GBM:
取期望值,获得和上面同样的结果:
在金融中的应用
-
主条目:布莱克-舒尔斯模型
几何布朗运动在布莱克-舒尔斯定价模型被用来定性股票价格,因而也是最常用的描述股票价格的模型。
使用几何布朗运动来描述股票价格的理由:
- The expected returns of几何布朗运动are independent of the value of the process (stock price), which agrees with what we would expect in reality.[3]
- 几何布朗运动process only assumes positive values, just like real stock prices.
- 几何布朗运动 process shows the same kind of 'roughness' in its paths as we see in real stock prices.
- 几何布朗运动过程计算相对简单。.
然而,几何布朗运动并不完全现实,尤其存在一下缺陷:
-
In real stock prices, volatility changes over time
(possibly
stochastically), but in GBM, volatility is assumed constant. -
In real
stock prices, returns are usually not normally distributed (real
stock returns have higher
峰度 ('fatter tails'), which means there is a higher chance of large price changes). [4]
几何布朗运动推广
In an attempt to make GBM more realistic as a model for stock
prices, one can drop the assumption that the volatility (http://upload.wikimedia.org/wikipedia/zh/math/9/d/4/9d43cb8bbcb702e9d5943de477f099e2.png) is constant. If we
assume that the volatility is adeterministic
http://s14/middle/79883453tc2e34047d2cd&690

加载中…