数学符号的起源

标签:
数学的历史杂谈 |
数学符号的起源
括号(),1591年法国数学家韦达开始使用括线,1629年格洛德开始使用括号。
大括号"{
高斯
高斯(C.F.Gauss,1777.4.30-1855.2.23)是德国数学家、物理学家和天文学家。那道著名的「从一加到一百」的算术题,高斯很快就算出了正确答案。他有“数学王子”、“数学家之王”的美称、被认为是人类有史以来最伟大的三位(或四位)数学家之一(阿基米德、牛顿、高斯或加上欧拉)。
高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是:
在日常生活中,数学无处不在,比如说:买菜、卖菜、算多少钱
哥德巴赫猜想
有另一个非常有名的“(1+1)”,它就是组名的哥德巴赫猜想。尽管听起来很神奇,但它的题面并不费解,只要具备小学三年级的数学水平就就能理解其含义(你说捏?-.-)。原来,18世纪时,德国数学家哥德巴赫偶然发现,每个不小于6的偶数都是两个素数之和。例如3+3=6
九九乘法表的由来
《九九乘法歌诀》,又常称为“小九九”。现在学生学的“小九九”口诀,是从“一一得一”开始,到“九九八十一”止,而在古代,却是倒过来,从“九九八十一”起,到“二二得四”止。因为口诀开头两个字是“九九”,所以,人们就把它简称为“九九”。大约到13、14世纪的时候才倒过来像现在这样“一一得一……九九八十一”。
中国使用“九九口诀”的时间较早。在《荀子》、《管子》、《淮南子》、《战国策》等书中就能找到“三九二十七”、“六八四十八”、“四八三十二”、“六六三十六”等句子。由此可见,早在“春秋”、“战国”的时候,《九九乘法歌诀》就已经开始流行了。
现在人们一般把那些有心计、会算计、善谋划的人形容为心里有“小九九”。
祖冲之
祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。他曾经对古代数学著作《九章算术》作了注释,又编写一本《缀术》。
祖暅
祖暅,祖冲之之子,同其父祖冲之一起圆满解决了球面积的计算问题,得到正确的体积公式。现行教材中著名的“祖暅原理”,在公元五世纪可谓祖暅对世界杰出的贡献。
华罗庚
华罗庚,中国现代数学家。1910年11月12日生于江苏省金坛县。1985年6月12日在日本东京逝世。华罗庚1924年初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,受到专家重视,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应苏联普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年始,他为伊利诺伊大学教授。
陈景润
数学家,中国科学院院士。1933
圆周率的进化史
古希腊欧几里得《几何原本》(约公元前3世纪初)中提到圆周率是常数,中国古算书《周髀算经》(
中国数学家刘徽在注释《九章算术》(263年)时只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术。他用割圆术一直算到圆内接正192边形。
南北朝时代数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7。其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲称之为安托尼斯率。
南北朝·圆周率
长度单位米的诞生
在公元1790年之前世界各国的长度单位几乎各不相同,给不同国家的人们之间相互交流带来了很大的麻烦。这时,法国的一位科学家他雷兰提出了制定一个世界各国通用单位的建议。
数学史最长的国家
中国数学发达的历史至少有四千多年,这是其他任何国家所不能比拟的。世界上其他文明古国的数学史,印度达3500年至4000年左右;希腊的从公元前六世纪到公元四世纪,达一千年;阿拉伯的数学仅限于8至13世纪,有500多年;欧洲国家的在10世纪以后才开始;日本的则迟至17世纪以后。所以我国是世界上数学历史最长的国家。有三个时期,形成时期、高潮时期、融合时期。
中国数学有悠悠4000多年的历史;约400位知名数学家;2500种左右数学著作(包括失传的在内),流传下来的差不多有2100种。此外,在天文历法等方面的典籍中,也包含着某些高水平的数学成果。这是中华民族对人类的伟大贡献之一,值得我们炎黄子孙引以为荣。
数学起源于结绳记数和土地丈量?
大约在300万年前,处于原始社会的人类用在绳子上打结的方法来记数,并以绳结的大小来表示野兽的大小。数的概念就是这样逐渐发展起来的。
杨辉三角
北宋人贾宪约1050年首先使用“贾宪三角”进行高次开方运算,南宋数学家杨辉在《详解九章算法》(1961年)记载并保存了“贾宪三角”,故称杨辉三角。元朝数学家朱世杰在《四元玉鉴》(1303年)扩充了“贾宪三角”成“古法七乘方图”。在欧洲直到1623年以后,法国数学家帕斯卡在13岁时发现了“帕斯卡三角”。
杨辉三角的三个基本性质主要是二项展开式的二项式系数即组合数的性质,它是研究杨辉三角其他规律的基础。杨辉三角横行的数字规律主要包括横行各数之间的大小关系。组合关系以及不同横行数字之间的联系。
file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-12091.png
杨辉三角
杨辉三角形,又称贾宪三角形,帕斯卡三角形,是二项式系数在三角形中的一种几何排列。
明朝·算盘
进制的知识
几乎每个民族最早都使用都十进制计数法,这是因为
但是这不等于说只有十进制计数法一种计数方法。例如,世界各国在计算年月日时不约而同地使用“十二进制”(12个月为一年)又如:我国过去16两才算为一斤,这就是“十六进计数法”;无独有偶,英制重量单位中,1常衡磅也是等于16盎司(也叫“英两”或“唡”)。为什么会这样呢?因为我们的祖先认为十六进位制便于把东西多次用二相除,我想英国人大概也是出于这种考虑吧?大概也是出于多次平分较为方便道考虑吧,古代两河流域的人们最早发明用六十进位法计算时间和圆周角度,以后便推广到全世界。
过去,保守的英国人一直在货币兑换方面坚持实行在外国人看来十分繁琐的进位制:1英镑=20先令;1先令=12便士。晕!在英国的“老外”往往算了半天还弄不清究竟1英镑能换多少便士,或凑多少便士才够换成1英镑。直到1971年,英国政府才挡不住世界潮流,宣布货币实行十进位制:1英镑=100便士,取消了先令。
二进制是目前世界计算机应用常用的进制
在上古时代,人们计数不方便,会借助身边的东西来记忆。手当然是最方便的,所以会从1数到10。之后成为习惯,一代代传下来。就是现在我们普遍使用十进制。
零的由来
0是位值制记数法的产物。我们现在使用的印度-阿拉伯数字,就是用十进位值制记数法的了。例
用"空"表示零虽然有效,但终究有些不伦不类,在中国的古书中,缺字一般用方块□来表示,但他们常用的行书,很容易把方块画成圆圈,所以后来便以○来表示
希腊的托勒密是最早采用这种扁圆0号的人,
1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597……
其实早在中国《道德经》第四十三章中就道出了神奇数字系列的真谛:“道生一,一生二,二生三,三生万物。”
任何相列的两个数字之和都等于后一个数字,例如:1+1=2;2+3=5; 5+8=13;144+233=377; ……
①
②
③
黄金分割
黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值为1∶0.618或1.618∶1,即长段为全段的0.618。0.618被公认为最具有审美意义的比例数字。上述比例是最能引起人的美感的比例,因此被称为黄金分割。
它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为“黄金分割”。
小数点的由来
在很久以前,还没有出现小数点。人们写小数的时候,如果是写小数部分,就将小数部分降一格写,略小于整数部分。16世纪,德国数学家鲁道夫用一条竖线来隔开整数部分和小数部分。17世纪,英国数学家耐普尔采用一个逗号“,”来作为整数部分和小数部分的分界点。17世纪后期,印度数学家研究小数时,首先使用小圆点“.”来隔开整数部分和小数部分,直到这个时候,小数点才算真正诞生了。
小数点看起来个头小,可它的作用却大的很。它若是不高兴随意乱跑,数的大小可就发生变化了。小数点向右(左)移动一位、二位、三位······原来的数就扩大(缩小)10倍、100倍、1000倍······
数学历史
1、阿拉伯数字是怎么来的?
1、2、3、4、5、6、7、8、9、0这些数字,大家叫它阿拉伯数字。可是,阿拉伯数字并不是阿拉伯人创造的,而是印度人创造的。
大约在一千五百年以前,印度人就采用了一种特殊的字来表示数,这些字总共九个,而且非常简单,只要一划或两划便可写成。你看,那时的印度数字:
file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-31821.png
不都是一笔连下来就可以写出来了么!
后来,由于东方与西方来往做生意的人多了,印度数字由商人传入了西班牙。
公元八世纪时,西班牙和阿拉伯打起仗来,侵入西班牙的阿拉伯人感到这种数字很简单,就把它学了回去,后来又把它传到欧洲。在十世纪时,欧洲出现的阿拉伯数字是这样的:
file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-8327.png
这时已经使用「0」的符号了。
在使用中人们不断改进,到了十四世纪时,欧洲通用的数字已经变得和现在的数字差不多了:
file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-10812.png
现在通用的数字是:
由于阿拉伯数字比中国数字、罗马数字都简单易学,因此它很快地被传布开来,到今天已通行全世界了。
九宫格数独
是一种源自18世纪末的瑞士,后在美国发展、并在日本得以发扬光大的数字谜题。数独盘面是个九宫,每一宫又分为九个小格。在这八十一格中给出一定的已知数字和解题条件,利用逻辑和推理,在其他的空格上填入1-9的数字。使1-9每个数字在每一行、每一列和每一宫中都只出现一次。这种游戏全面考验做题者观察能力和推理能力,虽然玩法简单,但数字排列方式却千变万化,所以不少教育者认为数独是训练头脑的绝佳方式。
file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-8158.png
数独的基础是数字魔方,它的解也一定是数字魔方。制作一个数独,便是使用一个一般的数字魔方,盖住部分数字,成为一个拥有唯一解的数独。
数独前身为“九宫格”,最早起源于中国。数千年前,我们的祖先就发明了洛书,其特点较之现在的数独更为复杂,要求纵向、横向、斜向上的三个数字之和等于15,而非简单的九个数字不能重复。中国古籍《易经》中的“九宫图”也源于此,故称“洛书九宫图”。而“九宫”之名也因《易经》在中华文化发展史上的重要地位而保存、沿用至今。
标准数独的规则为:数独每行、每列及每宫填入数字1-9且不能重复。