⒈不定积分的方法与技巧
设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)
C(C为任意常数)叫做函数f(x)的不定积分,记作,即∫f(x)dx=F(x)+C。
其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分。
第一换元法(凑微分法)
例2.5.9求http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041001.gif .
解.因(1+x2)'
=2x,与被积函数的分子只差常数倍数2,如果将分子补成2x,即可将原式变形:
原式=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041002.gif (令u=1+x2)
=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041003.gif. (代回u=1+x2)
注.此例解法的关键是凑了微分d(1+x2).一般地
在F '(u)=f(u),u=j(x)可导,且j'
(x)连续的条件下,我们有
第一换元公式(凑微分):
u=j
(x)
积分
代回
u=j
(x)
∫f[j(x)]j'
(x)dx
=∫f[j(x)]dj(x)=∫f(u)du=F(u)+C=F[j(x)]+C
其中函数j(x)是可导的,且F(u)是f(u)的一个原函数.
从上述公式可看出凑微分法的步骤:
凑微分————→换元————→积分————→再换元
j' (x)dx=dj(x)
u=j(x)
得F(u)+C
得F[j(x)]+C
注.凑微分法的过程实质上是复合函数求导的逆过程.事实上,在
F '(u)=f(u)的前提下,上述公式右端经求导即得:
[F[j(x)]+C]'
=F '[j(x)]j'
(x)=f[j(x)]j'
(x)
例2.5.10求∫(ax+b)mdx.(m≠-1,a≠0)
解.原式=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041004.gif
(凑微分d(ax+b))
=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041005.gif
(换元u=ax+b)
=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041006.gif
(积分)
=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041007.gif.
(代回u=ax+b)
例2.5.11 求http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041008.gif .
解.原式=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041009.gif
(凑微分d(-x3)=-3x2dx)
=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041011.gif
=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041012.gif. (换元u=-x3)
例2.5.12求∫tanxdx .
解.原式=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041013.gif
=-ln|cosx|+C
.
同理可得
∫cotxdx=ln|sinx|+C
.
例2.5.13求http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041014.gif.(a>0)
解.原式=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041015.gif
=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041016.gif .
例2.5.14 求http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041017.gif(a>0).
解.原式=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041018.gif
=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041034.gif .
例2.5.15求http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041020.gif.
解.原式=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041021.gif
=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041022.gif
=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041023.gif
=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041024.gif.
例2.5.16∫secxdx.
解.原式=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041025.gif (换元u=sinx)
=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041026.gif
=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041027.gif
=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041028.gif (代回u=sinx)
=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041029.gif
=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041030.gif
=ln|secx+tanx|+C
.
公式:∫secxdx=ln|secx+tanx|+C
.
例.2.5.17求∫cscxdx
.
解.原式=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041031.gif
=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041032.gif
=ln|cscx-cotx|+C
.
公式:∫cscxdx=ln|cscx-cotx|+C
.
第二换元法
不定积分第一换元法的公式中核心部分是
∫f[j(x)]j'(x)dx=∫f(u)du
我们从公式的左边演算到右边,即换元:u=j(x).与此相反,如果我们从公式的右边演算到左边,那么就是换元的另一种形式,称为第二换元法.即若f(u),u=j(x),j'(x)均连续,u=j(x)的反函数x=j-1(u)存在且可导,F(x)是f[j(x)]j'(x)的一个原函数,则有
∫f(u)du
=∫f[j(x)]j'(x)dx
=F(x)+C
=F[j-1(u)]+C
.
第二换元法常用于被积函数含有根式的情况.
例2.5.18求http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051001.gif
解.令http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051002.gif (此处j(t)=t2).于是
原式=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051003.gif
=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051004.gif
=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051006.gif)
注.换元http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051007.gif=t的目的在于将被积函数中的无理式转换成有理式,然后积分.
第二换元法除处理形似上例这种根式http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051011.gif(a>0)的被积函数的积分.
例2.5.19求http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051015.gif. (a>0)
解.令x=asect,则dx=asect
tant
dt,于是
原式=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051016.gif=∫sectdt
=ln|sect+tant|+C1
.
到此需将t代回原积分变量x,用到反函数t=arcsechttp://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051018.gif满足:
sect=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051019.gif
http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205050001.gif
由此,原式=ln|sect+tant|+C1
= http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051020.gif
= http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051021.gif
http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051023.gif.
注.C1是任意常数,-lna是常数,由此C=C1-lna仍是任意常数.
例2.5.20求http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051024.gif. (a>0)
解.令x=atant,则dx=asec2tdt,于是
原式=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051025.gif=∫sectdt
=ln|sect+tant|+C1
.
http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205050002.gif
图解换元得
原式=ln|sect+tant|+C1
= http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051026.gif
http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051028.gif.
公式:http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051029.gif.
例2.5.21求http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051030.gif. (a>0)
解.令x=asint,则dx=acostdt,于是
原式=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051037.gif
=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051032.gif
=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051033.gif+C .
http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205050003.gif
图解换元得:
原式=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051034.gif+C
=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051035.gif+C .
除了换元法积分外,还有一个重要的积分公式,即分部积分公式
加载中,请稍候......