加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

不定积分研究心得

(2011-03-21 18:08:54)
标签:

宋体

不定积分

微分法

原函数

叫做

杂谈

分类: 高等数学研究心得

⒈不定积分的方法与技巧

设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x) C(C为任意常数)叫做函数f(x)的不定积分,记作,即∫f(x)dx=F(x)+C。

其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分。

第一换元法(凑微分法)

 

 

例2.5.9http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041001.gif .

.(1+x2)' =2x,与被积函数的分子只差常数倍数2,如果将分子补成2x,即可将原式变形:

原式=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041002.gif             (u=1+x2)

=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041003.gif. (代回u=1+x2)

.此例解法的关键是凑了微分d(1+x2).一般地

F '(u)=f(u),u=j(x)可导,且j' (x)连续的条件下,我们

 

第一换元公式(凑微分)

                                                         u=j (x)      积分  代回 u=j (x)

f[j(x)]j' (x)dx =f[j(x)]dj(x)=f(u)du=F(u)+C=F[j(x)]+C

其中函数j(x)是可导的,F(u)f(u)的一个原函数.

从上述公式可看出凑微分法的步骤:

 

凑微分————→换元————→积分————→再换元

j' (x)dx=dj(x  u=j(x     F(u)+C     F[j(x)]+C

 

.凑微分法的过程实质上是复合函数求导的逆过程.事实上,在

F '(u)=f(u)的前提下,上述公式右端经求导即得:

[F[j(x)]+C]' =F '[j(x)]j' (x)=f[j(x)]j' (x)

 

例2.5.10(ax+b)mdx.(m-1,a0)

.原式=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041004.gif      (凑微分d(ax+b))

=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041005.gif                 (换元u=ax+b)

=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041006.gif         (积分)

=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041007.gif   (代回u=ax+b)

2.5.11 http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041008.gif .

.原式=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041009.gif         (凑微分d(-x3)=-3x2dx)

=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041011.gif                       

=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041012.gif.            (换元u=-x3)

 

2.5.12tanxdx .

.原式=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041013.gif                 

=-ln|cosx|+C .

同理可得

cotxdx=ln|sinx|+C .

2.5.13http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041014.gif.(a>0)

.原式=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041015.gif

=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041016.gif  .

2.5.14 http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041017.gif(a>0).

.原式=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041018.gif

=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041034.gif .

2.5.15http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041020.gif.

.原式=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041021.gif

=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041022.gif

=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041023.gif

=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041024.gif.  

2.5.16secxdx.

.原式=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041025.gif  (换元u=sinx)

=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041026.gif

=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041027.gif

=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041028.gif (代回u=sinx)

=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041029.gif

=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041030.gif

=ln|secx+tanx|+C .

 公式:secxdx=ln|secx+tanx|+C .

.2.5.17cscxdx .

.原式=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041031.gif

=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point4/images/p0205041032.gif

=ln|cscx-cotx|+C .

公式:cscxdx=ln|cscx-cotx|+C . 

        第二换元法

 

不定积分第一换元法的公式中核心部分是

f[j(x)]j'(x)dx=f(u)du

 

我们从公式的左边演算到右边,即换元:u=j(x).与此相反,如果我们从公式的右边演算到左边,那么就是换元的另一种形式,称为第二换元法.即若f(u),u=j(x),j'(x)均连续,u=j(x)的反函数x=j-1(u)存在且可导,F(x)f[j(x)]j'(x)的一个原函数,则有

 

f(u)du =f[j(x)]j'(x)dx =F(x)+C =F[j-1(u)]+C .

第二换元法常用于被积函数含有根式的情况.

2.5.18http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051001.gif

.http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051002.gif  (此处j(t)=t2)于是

原式=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051003.gif

=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051004.gif

=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051006.gif)

注.换元http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051007.gif=t的目的在于将被积函数中的无理式转换成有理式,然后积分.

第二换元法除处理形似上例这种根式http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051011.gif(a>0)的被积函数的积分.

 

被积函数含根式

换元方法

运用的三角公式

http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051012.gif

x=asect

sec2t-1=tan2t

http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051013.gif

x=atant

tan2t+1=sec2t

http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051014.gif

x=asint

1sin2t=cos2t

 

2.5.19http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051015.gif. (a>0)

.x=asectdx=asect tant dt,于是

原式=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051016.gif=sectdt

=ln|sect+tant|+C1 .

到此需将t代回原积分变量x,用到反函数t=arcsechttp://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051018.gif满足:

sect=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051019.gif

http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205050001.gif 

由此,原式=ln|sect+tant|+C1

= http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051020.gif

= http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051021.gif

  http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051023.gif.

注.C1是任意常数,-lna是常数,由此C=C1-lna仍是任意常数.

2.5.20http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051024.gif. (a>0)

.x=atant,则dx=asec2tdt,于是

原式=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051025.gif=sectdt

=ln|sect+tant|+C1

http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205050002.gif

图解换元得

原式=ln|sect+tant|+C1

 

= http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051026.gif

http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051028.gif.

公式:http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051029.gif.  

2.5.21http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051030.gif. (a>0)

.x=asint,则dx=acostdt,于是

原式=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051037.gif

=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051032.gif

=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051033.gif+C .

http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205050003.gif

图解换元得:

原式=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051034.gif+C

=http://www.math.nankai.edu.cn/~gdsxjxb/wlkj/windows/artsmath/chapter2/section5/point5/images/p0205051035.gif+C .

除了换元法积分外,还有一个重要的积分公式,即分部积分公式

 

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有