加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

前馈型神经网络与反馈型神经网络的区别

(2012-05-05 10:15:14)
标签:

前馈型神经网络

反馈型神经网络

杂谈

分类: 经典算法/数据挖掘/神经网络

前馈型神经网络取连续或离散变量,一般不考虑输出与输入在时间上的滞后效应,只表达输出与输入的映射关系;

反馈型神经网络可以用离散变量也可以用连续取值,考虑输出与输入之间在时间上的延迟,需要用动态方程来描述系统的模型。

前馈型神经网络的学习主要采用误差修正法(如BP算法),计算过程一般比较慢,收敛速度也比较慢;

而反馈型神经网络主要采用Hebb学习规则,一般情况下计算的收敛速度很快。

反馈网络也有类似于前馈网络的应用,并且在联想记忆和优化计算方面的应用更显特点。

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有