矩形的判定及教学反思(姜梅娟)

分类: 精品教案及反思 |
6.1 矩形(2)
【设计理念】
1、充分考虑了为学生提供动手实践、研究探讨的时间与空间,让学生经历知识发生、发展的全过程,并能学以致用。
2、根据本节课的特点,适当、适量设置例题、习题。使整个课堂教学设计体现了活动性、开放性、探究性、合作性、生成性。
3、教师始终起到启发、点拨、纠偏、示范的作用。
4、学生积极参与到课堂教学中来,动手动口动脑相结合,使他们“听”有所思,“学”有所获.
【教材分析】
1.在教材中的地位与作用
【教学方法与教学手段】
1.教学方法
探究发现、合作学习的方法
2.教学手段
采用多媒体辅助教学,促进学生自主学习,提高学习效率。
【教学过程】
环节一:创设情境、导入新课
1、判定四边形是矩形的方法是什么?(用定义)(1)是不是平行四边形,(2)再看它有无直角。
2、矩形是特殊的平行四边形它具有哪些性质?
(通过对矩形定义及性质的回顾,引出判定矩形除了定义外,还有哪些方法,导入新课。)
环节二:尝试发现,探索新知
2、然后通过同桌同学交流用有几个直角才能构成矩形,并说明理由。
(此问题的解决以动手实践,合作交流的形式进行,学生在探究过程中根据已有的知识积累——矩形的定义,得出矩形的判定定理一。教师以合作者的身份深入学生中,了解学生的探究进程并适当给予点拨。)
活动二:教师提问:矩形的对角线相等,相反对角线相等的四边形是什么图形?在学生回答是或不是的情况下,让学生下例步骤进行探索。
3、画两条长度相等并且互相平分的线段,并把它们的四个顶点顺次连结,看是不是矩形?
4、然后通过同桌同学交流用怎样的两条长度相等才能构成矩形,并说明理由。
最后通过教师演示动画,师生进行适当交流、归纳、讲解,得出矩形的判定定理二。
(此问题的解决仍以分组合作交流的形式进行,通过此种互动过程,让全体学生参与其中,获得不同程度的收获,体验成功的喜悦)
活动三:矩形的判定定理二的证明。已知:在平行四边形ABCD中,AC=BD,求证平行四边形ABCD是矩形。
对于判定定理二的证明教师从以下几个方面进行与学生交流。
(1)条件与结论各是什么?(引出条件与结论的关系)
(2)使一个平行四边形是矩形,已学过什么方法?(引出矩形的定义证明)
(3)要证明一个角是直角,根据平行四边形相邻两个角互补,只需证明什么?(引出证明两个三角形全等)
(4)如何选择要证明两个三角形全等,它们的条件是否满足?
最后由学生说出整个证明的过程,教师进行适当的点评与板书。
当判定定理一、定理二得出后,让学生总结矩形的三种判定方法(定义,定理一与定理二),并对题设进行比较、区分,使学生进一步明确定理应用的条件。
环节三:应用辨析,巩固定理
应用一、工人师傅为了检验两组对边相等的四边形是否成矩形,你有没有方法帮助工人师傅解决这个问题?(这一题是由引入判定定理二改编而成的,主要考查学生的判定矩形的多种解决方法的实际问题。)
应用二、例题讲解
对于这个问题的解决教师引导学生回顾过去证明“依次连结四边形各边中点所得的四边形是平行四边形的经验,使学生联想到连结四边形ABCD的两条对角线,然然后运用中位线定理,这样就解决了这个问题。
应用三、
练习一、判断题:
1、内角都相等的四边形是矩形。
2、对角线相等的四边形是矩形。
3、对角线互相平分且相等的四边形是矩形。
4、一组邻角相等的平行四边形是矩形。
(练习一,二是课内练习,主要为加强学生对所学定理的理解和掌握,
环节四:小结,体验收获
环节五:布置作业:见作业本
教学反思: