5.6 三角形的中位线 (陈笑霆)(集体备课教案)

标签:
杂谈 |
分类: 集体备课(八年级) |
课题 |
5.6 |
|
教学目标 |
1、了解三角形的中位线的概念; 2、了解三角形的中位线的性质“三角形中位线平行于第三边且等于第三边的一半”和定理“过三角形一边中点且平行另一边的直线平分第三边”; 3、能应用三角形中位线概念及定理进行有关的论证和计算,进一步提高学生的计算能力; 4、通过定理证明及一题多解,逐步培养学生的分析问题和解决问题的能力。 |
|
重点难点 |
重点是三角形的中位线定理。三角形的中位线定理的证明,因为其中添加辅助线的方法和思想学生比易掌握,是本节教学的难点。 |
|
教学 设想 |
结合教材编写思路,首先要创造性使用教材中的问题情景,把教材中不动的问题情景转化为学生互动的问题情景,使学生在互动中去感受。而有关的一些知识,都是在教师的引导下,经过学生充分的思考、讨论,并结合大量特例,由学生自己归纳、总结发现。此外,还要根据实际情况,对不同的学生进行有针对性的指导,使不同的学生都有发展,真正把课堂还给学生,使学生真正地变为课堂学习的主人,老师只是学生学习的引导者和组织者。 |
|
教 |
||
课前预习 |
|
|
教 |
备 |
|
情境1、如图,为了测量一个池塘的宽BC,在池塘一侧的平地上选一点A,再分别找出线段AB、AC的中点D、E,若测出DE的长,就可以求出池塘的宽BC,你知道这是为什么吗?
首先要让学生叙述上述两个问题的类似之处:在三角形中都有两边的中点(隐含三角形的中位线)。在让学生口述清净2中问题的证明思路。在这里,只需要分析思路即可:要证三条线段相等,一般情况下证两两线段相等。如要证BE=EF=FD,只要BE=EF和EF=FD即可。因此要首先证出四边形AMCN是平行四边形,然后结合定理“过三角形一边中点且平行另一边的直线平分第三边”证出。(在后面补充介绍)。
二、 2、动手操作:剪一刀,将一张三角形纸片剪成一张三角形纸片和一张梯形纸片 (1)如果要求剪得的两张纸片能拼成平行的四边形,剪痕的位置有什么要求? (2)要把所剪得的两个图形拼成一个平行四边形,可将其中的三角形做怎样的图形变换? 3、引导学生概括出中位线的概念:连结三角形两边中点的线段叫做三角形的中位线。(中位线是三角形与梯形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用。三角形中位线定理不但给出了三角形或梯形中线段的位置关系,而且给出了线段的数量关系,为平面几何中证明线段平行和线段相等提供了新的思路。) 问题:(1)三角形有几条中位线?(2)三角形的中位线与中线有什么区别? ——启发学生得出:三角形的中位线的两端点都是三角形边的中点,而三角形中线只有一个端点是边中点,另一端点上三角形的一个顶点。并结合三角形中线的定义,让学生明确两者区别,可做一练习,在⊿ABC中,画出中线、中位线 4、猜想:DE与BC的关系?(位置关系与数量关系)
1、证明你的猜想(引导学生写出已知,求证,并启发分析)
已知:⊿ABC中,D、E分别是AB、AC的中点,求证:DE 启发1:证明直线平行的方法有哪些?(由角的相等或互补得出平行,由平行四边形得出平行等) 启发2:证明线段的倍分的方法有哪些?(截长或补短) 学生分小组讨论,教师巡回指导,经过分析后,师生共同完成推理过程,板书证明过程,强调有其他证法。 证明:如图,以点E为旋转中心,把⊿ADE绕点E,按顺时针方向旋转180゜,得到⊿CFE,则D,E,F同在一直线上,DE=EF,且⊿ADE≌⊿CFE。
∴∠ADE=∠F,AD=CF,∴AB∥CF。又∵BD=AD=CF,∴四边形BCFD是平行四边形(一组对边平行且相等的四边形是平行四边形),∴DF∥BC(根据什么?),∴DE 2、进行题后小结:
l)延长DE到F,使EF=DE,连结CF,由△ADE≌△CFE,可得AD
(2)延长DE到F,使EF=DE,利用对角线互相平分的四边形是平行四边形,可得AD
(3)过点C作CF∥AB,与DE延长线交于F,通过证△ADE≌△CFE,可得AD 3、启发学生归纳定理,并用文字语言表达:三角形中位线平行于第三边且等于第三边的一半——三角形中位线定理。
为便于同学对定理能更好的掌握和应用,可引导学生分析三角形中位线定理的特点,即同一个题设下有两个结论,第一个结论是表明中位线与第三边的位置关系,第二个结论是说明中位线与第三边的数量关系,在应用时可根据需要来选用其中的结论(也 四、学以致用、落实新知 1、练一练:已知三角形边长分别为6、8、10,顺次连结各边中点所得的三角形周长是多少? 2、想一想:如果⊿ABC的三边长分别为a、b、c,AB、BC、AC各边中点分别为D、E、F,则⊿DEF的周长是多少?
(1)指出图中有几个平行四边形 (2)图中与ΔDEF全等的三角形有哪几个 (3)若AB=10cm,AC=6cm,则四边形ADFE的周长为______cm
(4)若ΔABC周长为6cm,面积为12cm2,则ΔDEF的周长是 例2、已知:如图,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点。求证:四边形EFGH是平行四边形。 因为已知点分别是四边形各边中点,如果连结对角线就可以把四边形分成三角形,这样就可以用三角形中位线定理来证明出四边形EFGH对边的关系,从而证出四边形EFGH是平行四边形。若学生在此时一时间找不到思路,则可进行如下的启发: 启发1:由E,F分别是AB,BC的中点,你会联想到什么图形? 启发2:要使EF成为三角的中位线,应如何添加辅助线?应用三角形的中位线定理,能得到什么?你能得出EF∥GH吗?为什么? 证明:如图,连接AC。∵EF是⊿ABC的中位线,
∴EF
五、学生练习,巩固新知 1、请回答引例中的问题(1)
2、如图,在四边形ABCD中,AB=CD,M,N,P分别是AD,BC,
分析:考虑到三角形任意两边之和大于第三边,我们可以把AD、BC或EF转到一个三角形之中,也可能与中点E、F构成相关的中位线,从而达到解题的目的。 证明:连结BD,取BD中点为O,连结OE,OF,
∵
而在△OEF中,OE+OF>EF,∴
说明:构造中位线的方法如能恰当使用,能使证题走上捷径. 说明选题角度: 主要侧重两点:一、有助于训练学生思维;二、有助于学生参与
典型例题
例、如图,已知:在
分析:由于D、E、F分别是三角形三边的中点,所以DE、DF、EF都是
解答:∵D、E是BC和CA的中点, ∴DE是
∴
∴
∴ 说明三角形的中位线是连结三角形两边中点的线段,它不同于三角形的中线,要分清楚三角形的中位线和中线的区别和联系.那么三角形的中位线定理提供了三角形中的线段的关系,解题时要注意运用这一关系. 六、小结回顾,反思提高 1、三角形中位线及三角形中位线与三角形中线的区别。 2、三角形中位线定理及证明思路。
七、作业布置:
已知:
如图,DE是⊿ABC的中位线,AF是BC边上的中线,DE和AF交于点O.求证:DE与AF互相平分。
|
(1)在本次集体备课中,大家觉得中位线定理的证明是难点,因为其中添加辅助线的方法和思想学生不易掌握。很多老师提出不采用课本的证明方法。 |
|
教后随笔 |
猜想DE与BC的关系?(位置关系与数量关系) 很多学生只想到位置的关系,而没想到数量的关系。
|