相似三角形的判定教学设计

教学目标:
1.了解相似三角形的概念,能用符号表示相似三角形,能指出相似三角形的对应边、对应角。
2.掌握相似三角形判定的预备定理。
3.经历探究相似三角形预备定理的探究过程,学会将未知问题转化成已知问题来研究的思想方法。
4.通过学习相似三角形判定的预备定理,感受寻找简单方法(定义法繁锁)证明三角形相似的必要性。
教学分析:
1.教材首先类似相似多边形的定义,给出相似三角形的定义,然后借助平行线分线段成比例定理导出相似三角形判定的预备定理,为后继学习相似三角形的判定奠定了基础。
2.学生在学习了相似多边形概念的基础上,很容易联想相似多边形的概念类比出相似三角形的概念,进而提出能否用更简单的条件来判断两个三角形相似的判定,为相似三角形的判定作好铺垫。
教学重、难点:
教学重点:
相似三角形判定的预备定理
教学难点:
相似三角形判定预备定理的探究过程
教具准备:多媒体课件、三角板
教学过程:
一.新课引入
1.什么叫做全等三角形?它在形状上、大小上有何特征?
2.两个全等三角形的对应边和对应角有什么关系?
3.复习平行线分线段成比例定理(文字表述及基本图形)
4.相似多边形的概念又是什么呢?
5.师:那么这两个三角形有什么关系呢?该如何称呼它们呢?(多媒体展示)
【设计意图:复习已经学过的全等三角形,及相似多边形,给出两个如图所示的三角形,按以前学习过的全等三角形并不满足条件,进而学生们会想到相似三角形】
二.新课进行
小组活动一:
【设计意图:让学生自己讨论,类比相似多边形,自己归纳出相似三角形的定义。这里可以让学生自由回答,全班及时纠正及补充。】
总结与归纳:
对应角相等,对应边成比例的两个三角形叫做相似三角形。
【设计意图:数学是严谨的学科,老师带领全班同学共同学习相似三角形的定义,规范定义并指出需要注意的事项。】
注意:相似三角形对应边的比k,叫做相似比(或相似系数).
两个相似三角形的相似比具有顺序性
【设计意图:学生给相似三角形下定义的时候可能顺序不同,故而相似比不同。尤其是当两个三角形全等的时候教师要及时加以说明。此时可以根据学生的举例加以说明。】
小组活动二:
那么我们该如何来判定两个三角相似呢?
(多媒体展示)
【设计意图:本题是课本上的经典题型,将此题全部抛给学生,作为前置性作业,让小组讨论。课堂上只给几分钟时间讨论就可以了。但是证明的过程老师带领全班同学一起完成,做到证明过程的完整、规范、严谨。】
小组活动三:
师:从本题中你们发现了什么呢?有没有什么规律可以总结一下呢?
【设计意图:一句话让学生来总结相似三角形的预备定理。这里可能学生们总结的不是很好,但是这可以培养学生的归纳总结能力和反思的想法。老师可以在学生讨论的时候适当给出引导。】
归纳与总结:
定理:平行于三角形一边的直线与其他两边(或两边的延长线)相交,截得的三角形与原三角形相似
在上述三个图形中,若DE〃BC,DE分别交AB、AC于点D、E,AD=3,DB=2,BC=10,求DE的长。
三.教学巩固
1. 如右图所示,已知DEBC,DE分别交AB、AC交于点D、E,AD=3,DB=2,BC=10,求DE的长
【设计意图:及时巩固所学知识,让学生学以致用。】
四.课堂小结
同学们本节课你有什么收获呢?与同小组的同学一起交流一下吧
【设计意图:一节课的好坏是学生是否积极主动的参与学习。学生有何收获是衡量一节课的标准。】
五.布置作业
已知DEBC, DFAC,指出图中所有相似的三角形
【设计意图:这个图是本节课出现的图,学生可以很好的利用刚学到的知识来解决问题。并学着尝试证明。】
七.教学反思