公开课《乘法分配律》教学设计与反思 王 琦
(2012-04-05 15:28:37)
标签:
育儿 |
分类: 名师帮带 |
教学目标:
1、通过探索乘法分配律中的活动,学生进一步体验探索规律的过程,初步学习体会提出猜想的方法及类比,说理,举例论证的方式,发展学生的思维力,创造力。
2、 引导学生在探索的过程中,自主发现乘法分配律,并能用字母表示。
3、 能够运用乘法的分配律进行简便计算。
重点、难点:
重点:学生参与推导乘法分配律的过程。
难点:乘法分配律的推理及运用。
教学过程:
一、回顾激趣,提出猜想.
(1)同学们,学习新课前,我们先来回顾学过的运算定律。找出共同点?和或积同。
乘法交换律的字母公式(
(设计意图:四个公式板书在黑板,以便与乘法分配律对比)
(2)利用学过的长方形周长内容得出两种不同解题方法。刚才的计算中你发现这两道题有什么关系吗?2×(
37+63)
教师让学生比较两个算式的异同点,并指名说一说自己找出的规律。
引导学生发现:这两个算式的运算顺序不同,但结果相同,两道题其实可以互相转化,可以用一个等式表示:2×( 37+63) =2×37 + 2×63
(3)将学生的知识迁移到本节课新授内容,在课的开始,积极调动学生学习积极性。
二、引导探究,发现规律。
1、(我们下面就一起来验证一下这位同学的猜想在其它的题里也是否成立?请看大屏幕。)
我班同学男生27人,女生25人,每人植树3棵,共植树?棵(植树节3.12)
(1)全班同学独立完成。
(2)谁愿意把自己的方法说给大家听听。(生回答,师板书)
(3)观察这两个算式,你有什么发现?
引导学生比较两个算式异同点,并指名学生说一说自己想法,思路。
生:这两个算式的得数是一样的。
师:是的,虽然他们的格式不同,但他们的得数相同,所以我们可以用一个符号把这两个算式联系起来。
生:等于号
师:对,用等于号相连,表示这两个式子是相等的,一起读一读,认识这两种方法的结果是一样的,师:再和前面的一组式子一起观察,
(让学生通过读,感悟到左边是两个数的和乘一个数,右边的两个数的积加上两个数的积)
2、举例验证,进一步感受
认真观察屏幕上的这个等式,你还能举出几个类似的例子来验证吗?(板书:举例)
(1)验证方法:要求每人出两组算式,数字随意举例,进行计算,验证你举的例子是否相等。然后拿到小组内交流(学生小组合作交流,教师巡视指导。)
(2)学生回报:谁来说一说自己举的例子。
(3)同学们,请看一看这三个同学举的例子,每组的结果都是相同的,我们就可以用等号把它们连接起来。(板书)
(4)轻声读这些等式,你发现了什么?
(设计意图:通过多个例子,揭示乘法分配律的普遍规律)
3、归纳总结,概括规律。
(1)现在谁能说一说这些等式有什么共同特点?(板书:总结)(运算顺序不同但结果相同)
(2)从刚才的举例过程中,你能发现乘法运算中的规律吗?
学生回报。
(出示:两个数的和与一个数相乘,可以用两个加数分别与这个数相乘,再把两个积相加,结果不变。这叫做乘法的分配律。)
同学们发现的这个知识规律,叫做乘法分配律。 (板书:乘法分配律)
(3)如果用a、b、c分别表示三个数,你会用字母表示乘法分配律吗?
结合学生回答,教师板书:(a+b)×c=a×c+b×c
(4)对于乘法分配律,用字母来表示,感觉怎样。
与乘法交换律、结合律想对照:a×b=b×a
(a+b)×c=a×c+b×c
(设计意图:增强学生对乘法分配律涉及到加法的运算难点的理解)
三、加强应用、深化理解
1、根据运算定律,在( )填上适当的数。
①(10+7) ×6=(
③7×48+7×52=(
(设计意图:通过具体的练习理解乘法分配律)
2、火眼金睛看一看:判断下面算式是否正确?并说明理由?
56×(19+28)=
56×19+28
32×(7×3)=
32×7+32×3
25×12+12×75 =
12×(25+75)
25×99+25
=(99+1)×25
3、利用乘法分配律,计算下列各题。
( 80 + 4 )
×25
师小结:通过前两道题的计算,我们可以看出,乘法分配律是互逆的。为了使计算简便,我们既可以从左边算式得到右边算式,又可以从右边算式得到左边算式。但遇到实际计算时,要因题而异。
4、34×10+27×10+39×10可不可以用乘法分配律
师:说明乘法分配律,不仅仅只适用于两个数的和,也可以三个数的和,四个数的和可以吗?说明也可以是:几个数的和与一个数相乘,可以先把它们分别与这个数相乘,再相加。(修改乘法分配律的板书)
5、找朋友
师:如果一个同学说出乘法分配律的左边部分,那你就说出它的右边部分,如果他说出的是右边部分,你就对出左边部分。看谁反应快。
6、24×8—4×8=(24—4)×8吗?
师:说明乘法分配律,不仅仅只适用于两个数的和,也可以是两个数的差,三个数的差可以吗?说明也可以是:几个数的和(或差)与一个数相乘,可以先把它们分别与这个数相乘,再相加(或相减)。(设计意图:拓展书本上乘法分配律的概念)
7、用简便方法计算下列各题。(8+4)×25
(设计意图:概念只有在具体的练习中才能逐步理解,概念教学必须当堂采用讲练相结合的方法,学生才能消化抽象的概念)
四、总结:
1,这节课你的收获是什么?什么叫做乘法分配律?(设计意图:不能让总结性提问只是走了过场,通过这个环节切实起到梳理知识,提高学生总结能力)
2、如果把乘法分配律中的加法改成减号,等式是否依然成立?根据乘法分配律,你能把下列等式填写完整吗?同学们课后交流一下,下节数学课我们再继续研究。
教师激发学生好胜心:在乘法分配律中有许多变化,题里辨别出用乘法分配律简算的题呢?36×99+36
《乘法分配律》教学反思
一、教学情况:
学生与我经过一学期的熟悉,在教学中已经互有默契。在没有提前布置、而且直接跳到这一单元内容教学的前提下,当天直接上课。整节课气氛和谐。学生在理解了定律后,具体的练习部分再次完善归纳,遵循了层层渐进的规律,学生学的轻松,兴趣也很浓厚,由于是自己教的学生,没有发生拖堂现象,课堂容量大、氛围好。
二、执教反思:
1、“情境设计”促进学生理解算理。
《标准》特别强调了计算与情境的关系。创设教学情境,有助于激发学生的学习兴趣,使智力达到最佳激活状态,沟通生活实际与数学学习、具体形象与概括抽象的联系,使学生在解决问题中理解和认识数学。
本节课我从众多设想中选择具有生活性和趣味性的求长方形周长以及本班同学植树活动引入,激发学生探究的兴趣,学生在用两种不同的方法解决这一问题的过程中,感受两种方法之间的联系与区别,体会乘法分配律的合理性,为下面进一步研究理解乘法分配律提供了现实材料。
2、数形结合,渗透建模思想。
从长方形周长的计算引入,学生通过观察、探索、回忆、验证等一系列活动发现了两种方法的结果相等,列成等式(64+36)×2=64×2+36×2;探究每步所求的数量关系。然后通过计算班级植树情况,男生和女生共植树棵树的两种求法进一步加深了学生对乘法分配律的了解,得出乘法分配律的一般形式:(a+b)×c=a×c+b×c。
在本节课的教学中我并没有停留在对乘法分配律的文字归纳上,而是进一步让学生利用多种方式来解释乘法分配律的意义。
如:“写一写这样的等式。要求如下:写出2-3个这样的等式;从具体的形出发,抽象出数的运算,再解释运算的含义。通过对乘法分配律意义的理解,学生对运算算理理解的广度、深度、贯通度都会有很好的促进作用,为简算、多种方法解应用题做好了铺垫,更有助于学生数学素养的整体提高。
3、初步感知——验证——概括定律的思路探究理解。
学生通过结果相等的算式初步感知内在的联系,我感到一个规律的得出应该通过一组算式的观察得到,不能草率,要遵循数学知识发展的自然规律,用兴趣引导学生主动探究,用多个例子验证得出普遍规律。
4、拓展教材,大胆尝试。
我们在教学中不断研究积累探讨如何用好教材。根据乘法分配律的具体应用简算时变式多,学生易出错的问题,我大胆尝试在课堂教学中把乘法分配律的定律(a+b)×c=a×c+b×c中字母c提出,多次强调,并且把题中符号稍加改变,归纳成“几个数的和(或差)与一个数相乘,可以先把它们分别与这个数相乘,再相加(减)”。
5、设计有效练习。
“用教材”不是简单地照搬书中的练习题,本节课我设计练习题把握从易到难,由知识向能力转化的梯度,既从学生掌握基本知识上考虑,又从训练思维的灵活上设计,寻找除书本外一些题型灵活,内容丰富,具有开拓学生思维举一反三的习题,增加学生灵活掌握知识的能力,让学生在正、反两方面的练习中,充分地感受乘法分配律的妙用,增强学习数学的兴趣。