加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

总结——01背包问题(动态规划算法)

(2019-02-12 19:54:20)
标签:

365

0-1 背包问题:给定 n 种物品和一个容量为 C 的背包,物品 i 的重量是 wi,其价值为 vi 。

问:应该如何选择装入背包的物品,使得装入背包中的物品的总价值最大?
分析一波,面对每个物品,我们只有选择拿取或者不拿两种选择,不能选择装入某物品的一部分,也不能装入同一物品多次。
解决办法:声明一个 大小为  m[n][c] 的二维数组,m[ i ][ j ] 表示 在面对第 i 件物品,且背包容量为  j 时所能获得的最大价值 ,那么我们可以很容易分析得出 m[i][j] 的计算方法,

(1). j < w[i] 的情况,这时候背包容量不足以放下第 i 件物品,只能选择不拿

m[ i ][ j ] = m[ i-1 ][ j ]

(2). j>=w[i] 的情况,这时背包容量可以放下第 i 件物品,我们就要考虑拿这件物品是否能获取更大的价值。

如果拿取,m[ i ][ j ]=m[ i-1 ][ j-w[ i ] ] + v[ i ]。 这里的m[ i-1 ][ j-w[ i ] ]指的就是考虑了i-1件物品,背包容量为j-w[i]时的最大价值,也是相当于为第i件物品腾出了w[i]的空间。

如果不拿,m[ i ][ j ] = m[ i-1 ][ j ] , 同(1)

究竟是拿还是不拿,自然是比较这两种情况那种价值最大。
由此可以得到状态转移方程:
if(j>=w[i])
    m[i][j]=max(m[i-1][j],m[i-1][j-w[i]]+v[i]);
else
    m[i][j]=m[i-1][j];

总结——01背包问题(动态规划算法)
#include
#include
using namespace std;
 
 
const int N=15;
 
 
int main()
{
    int v[N]={0,8,10,6,3,7,2};
    int w[N]={0,4,6,2,2,5,1};
 
 
    int m[N][N];
    int n=6,c=12;
    memset(m,0,sizeof(m));
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=c;j++)
        {
            if(j>=w[i])
                m[i][j]=max(m[i-1][j],m[i-1][j-w[i]]+v[i]);
 
 
            else
                m[i][j]=m[i-1][j];
        }
    }
 
 
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=c;j++)
        {
            cout<<m[i][j]<<' ';
        }
        cout<<endl;
    }
 
 
    return 0;
}


0

阅读 收藏 喜欢 打印举报/Report
前一篇:43@365
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有