加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

ABB_800xA学习笔记262:System_800xA_Control_6.0_AC_800M_Configuration52

(2023-12-15 20:45:42)
标签:

abb

system_800xa_ac800m

配置手册

功能和组件

分类: ABBDCS
继续学习配置手册第一章功能和组件,进入第129页。
Real value in AC 800M
AC800M实实数值
The AC 800M Controller stores real values according to the Institute of Electrical and Electronics Engineers, Inc. (IEEE) has standard for floating-point representations and computational results (IEEE Std 754-1985).
AC 800M 控制器根据电气和电子工程师协会 (IEEE) 的浮点表示和计算结果标准 (IEEE Std 754-1985) 存储实数值。
Floating-point consist of three fields, a sign (1-bit there 1 is positive), a biased exponent (8-bit) and a value (23-bit) gives a total of 32-bits. The range is ±1.18*10-38 to ±3.4*1038. The 24 bits (including the hidden bit) of mantissa in a 32-bit floating-point number represent a precision of approximately 7 significant decimal digits.
浮点由三个字段组成,一个符号(1 位,1 为正)、一个偏置指数(8 位)和一个值(23 位)总共给出 32 位。范围为 ±1.18*10-38 至 ±3.4*1038。32 位浮点数中尾数的 24 位(包括隐藏位)表示大约 7 位有效十进制数字的精度。
Unlike the real number system, which is continuous, a floating-point system has gaps between each number. If a number is not exactly representable, then it must be approximated by one of the nearest representable values.
与连续的实数系统不同,浮点系统在每个数字之间都有间隙。如果一个数字不能完全表示,则必须用最接近的可表示值之一来近似。
Because the same numbers of bits are used to represent all normalized numbers, the smaller the exponent is, the greater is the density of representable numbers. For example, there are approximately 8,388,607 single-precision numbers between 1.0 and 2.0, while there are only about 8191 between 1023.0 and 1024.0.
由于使用相同数量的位数来表示所有归一化数字,因此指数越小,可表示数字的密度就越大。例如,在 1.0 和 2.0 之间大约有 8,388,607 个单精度数字,而在 1023.0 和 1024.0 之间只有大约 8191 个。

Different results between types of CPU
不同型号CPU结果不同
All AC 800M controllers are limited to 32 bit accuracy regardless Floating Point Processor (FPU) or not.
所有的AC 800M控制器限制为32位精度,无论是否浮点处理器FPU
The SoftController does make use of the Floating Point Processor (FPU) which has an internal accuracy of 128bits (this is standard PC functionality). The FPU does have an internal accumulator which stores intermediate results with the mentioned high accuracy.
 SoftController 确实是用了浮点处理器,其内部精度为128位(这是标准PC功能)。FPU 确实有一个内部累加器,可以存储具有上述高精度的中间结果。
Therefore there could be a different in calculations between SoftController and AC 800M.
因此,SoftController 和 AC 800M 之间的计算可能有所不同。
Why there are no exact or unexpected results
为什么没有确切或意外的结果
All calculations will give an approximately value, Inaccurate or unexpected results in your calculations have to do with the gaps between each number that has been truncated where the exponent is large.
所有计算都将给出一个近似值,计算中的不准确或意外结果与指数较大的每个数字之间的间隙有关。
Adding small numbers to a very large one in all computer systems give an inaccurate result for example:
X:= 10.0E8 + 1+1+1+1+1+1+1+1+1.....(1000 times).
X:= 10.0E8 + 1000
This will give different results on X if the addition of +1 is truncated and not the +1000 operation
如果 +1 的加法被截断,而不是 +1000 操作,这将在 X 上给出不同的结果。
Another example: 另一个例子
65536.0000000 is 6.5536E4 or in binary form 0 10001111 0000000 00000000
00000000
65536.0039062 is the same as 6.5536E4 or in binary form 0 10001111 0000000
00000000 00000000
65536.0039063 is 6.55360078E4 or in binary form 0 10001111 0000000 00000000
00000001
To maintain accuracy in your calculations scale down the large value (or scale up the small one) before the calculations are made, then compensate for the scaling.
为了保持计算的准确性,请在进行计算之前缩小大值(或放大小值),然后补偿缩放。
In extreme cases, the sum of two non-zero numbers may be equal to one of them.
在极端情况下,两个非零数的总和可能等于其中一个。


0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有