加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

FRM(17)BSM model

(2009-11-11 11:33:51)
标签:

杂谈

分类: CrewsHE

Black–Scholes model

The Black–Scholes model of the market for a particular equity makes the following explicit assumptions:

From these ideal conditions in the market for an equity (and for an option on the equity), the authors show that "it is possible to create a hedged position, consisting of a long position in the stock and a short position in [calls on the same stock], whose value will not depend on the price of the stock."[2]"

Notation

Define

S, the price of the stock (please note as below).
V(S,t), the price of a derivative as a function of time and stock price.
C(S,t) the price of a European call and P(S,t) the price of a European put option.
K, the strike of the option.
r, the annualized risk-free interest rate, continuously compounded.
μ, the drift rate of S, annualized.
σ, the volatility of the stock; this is the square root of the quadratic variation of the stock’s log price process.
t a time in years; we generally use now = 0, expiry = T.
Π, the value of a portfolio.
R, the accumulated profit or loss following a delta-hedging trading strategy.


 Black–Scholes PDE

http://upload.wikimedia.org/wikipedia/commons/thumb/f/f2/Stockpricesimulation.jpg/180px-Stockpricesimulation.jpgmodel" />
Simulated Geometric Brownian Motions with Parameters from Market Data



As per the model assumptions above, we assume that the underlying asset (typically the stock) follows a geometric Brownian motion. That is,

http://upload.wikimedia.org/math/9/0/0/9005394f2fd5aeed7fb43a78b427c4a8.pngmodel" />
where Wt is Brownian—the dW term here stands in for any and all sources of uncertainty in the price history of a stock.

The payoff of an option V(S,T) at maturity is known. To find its value at an earlier time we need to know how V evolves as a function of S and T. By Itō’s lemma for two variables we have

http://upload.wikimedia.org/math/3/a/a/3aaefe450d6f1c7bdde1aa89c7b460bb.pngmodel" />
Now consider a trading strategy under which one holds a single option and continuously trades in the stock in order to hold http://upload.wikimedia.org/math/a/9/1/a9140b87bacbd1cc819b3f3d64bf68ba.pngmodel" /> shares. At time t, the value of these holdings will be

http://upload.wikimedia.org/math/6/9/2/6928bd4f5709c1ccec17dd25c40541d6.pngmodel" />
The composition of this portfolio, called the delta-hedge portfolio, will vary from time-step to time-step. Let R denote the accumulated profit or loss from following this strategy. Then over the time period [t, t + dt], the instantaneous profit or loss is

http://upload.wikimedia.org/math/0/6/2/0627b1b8204765abf4f37b6c7161bf2f.pngmodel" />
By substituting in the equations above we get

http://upload.wikimedia.org/math/2/b/2/2b27a61419b5a84da95e5b59ae18ab6a.pngmodel" />
This equation contains no dW term. That is, it is entirely riskless (delta neutral). Black and Scholes reason that under their ideal conditions, the rate of return on this portfolio must be equal at all times to the rate of return on any other riskless instrument; otherwise, there would be opportunities for arbitrage. Now assuming the risk-free rate of return is r we must have over the time period [t, t + dt]

http://upload.wikimedia.org/math/b/3/3/b338dc4c2ddeae7e01a22ab4e10b1e55.pngmodel" />
If we now substitute in for Π and divide through by dt we obtain the Black–Scholes PDE:

http://upload.wikimedia.org/math/0/a/7/0a73eeb3a0a4e975cf629fe206d780be.pngmodel" />
With the assumptions of the Black–Scholes model, this partial differential equation holds whenever V is twice differentiable with respect to S and once with respect to t.

 Other derivations of the PDE

 
Above we used the method of arbitrage-free pricing ("delta-hedging") to derive some PDE governing option prices given the Black–Scholes model. It is also possible to use a risk-neutrality argument. This latter method gives the price as the expectation of the option payoff under a particular probability measure, called the risk-neutral measure, which differs from the real world measure.

Black–Scholes formula


The Black Scholes formula is used for obtaining the price of Europeanput and call options. It is obtained by solving the Black–Scholes PDE as discussed – see derivation below.

The value of a call option in terms of the Black–Scholes parameters:

http://upload.wikimedia.org/math/f/4/b/f4bb8b88843683b61ea4040a5627f747.pngmodel" />
http://upload.wikimedia.org/math/7/b/f/7bf0a2cbbe1fb51ef31505f43671687f.pngmodel" />
http://upload.wikimedia.org/math/3/9/3/393718d6dd012428ef23d72114ba5ca3.pngmodel" />
The price of a put option is:

http://upload.wikimedia.org/math/c/4/0/c409bc8a395e62fa75fab332924f756b.pngmodel" />
For both, as above:


Interpretation

N(d1) and N(d2) are the probabilities of the option expiring in-the-money under the equivalent exponential martingale probability measure (numéraire = stock) and the equivalent martingale probability measure (numéraire = risk free asset), respectively. The equivalent martingale probability measure is also called the risk-neutral probability measure. Note that both of these are probabilities in a measure theoretic sense, and neither of these is the true probability of expiring in-the-money under the real probability measure.

Derivation

We now show how to get from the general Black–Scholes PDE to a specific valuation for an option. Consider as an example the Black–Scholes price of a call option, for which the PDE above has boundary conditions

http://upload.wikimedia.org/math/e/b/a/ebaa0d1b31209736e222ed072f8c234a.pngmodel" />
http://upload.wikimedia.org/math/8/5/3/853c80113b61a970278dc0df3847d8c3.pngmodel" />
http://upload.wikimedia.org/math/7/3/7/737ec3ffeaef269c19b5b9acdd56c08c.pngmodel" />
The last condition gives the value of the option at the time that the option matures. The solution of the PDE gives the value of the option at any earlier time, http://upload.wikimedia.org/math/3/2/7/327c39b2c927a4afc20a742898d4932b.pngmodel" />. In order to solve the PDE we transform the equation into a diffusion equation which may be solved using standard methods. To this end we introduce the change-of-variable transformation

http://upload.wikimedia.org/math/a/2/0/a207497ae54cc4ee8dc5772c41bf2639.pngmodel" />
http://upload.wikimedia.org/math/5/6/9/5698fb44c235a37f77fd0308aebb3650.pngmodel" />
http://upload.wikimedia.org/math/f/4/8/f48a86950441acf82c021638c088321d.pngmodel" />
Then the Black–Scholes PDE becomes a diffusion equation

http://upload.wikimedia.org/math/f/9/3/f936a14590fca871c02edb8056c3c038.pngmodel" />
The terminal condition C(S,T) = max(SK,0) now becomes an initial condition

http://upload.wikimedia.org/math/5/8/a/58a9295561133dd5701530778057da51.pngmodel" />
Using the standard method for solving a diffusion equation we have

http://upload.wikimedia.org/math/d/8/2/d827e85cc491c9aeb59ae8112a365b3f.pngmodel" />
After some algebra we obtain

http://upload.wikimedia.org/math/2/e/e/2eeb9ddfff1a8fba5a9653b59b75f753.pngmodel" />
where

http://upload.wikimedia.org/math/3/f/a/3fab39512de434f13b27f55a1d33455c.pngmodel" />
and

http://upload.wikimedia.org/math/9/0/3/903ee7b917f97ceeb842bef2baafa442.pngmodel" />
Substituting for u, x, and τ, we obtain the value of a call option in terms of the Black–Scholes parameters:

http://upload.wikimedia.org/math/f/4/b/f4bb8b88843683b61ea4040a5627f747.pngmodel" />
where

http://upload.wikimedia.org/math/d/a/d/dadf3312c52405a6930a5a69b525c6b6.pngmodel" />
http://upload.wikimedia.org/math/3/9/3/393718d6dd012428ef23d72114ba5ca3.pngmodel" />
The price of a put option may be computed from this by put-call parity and simplifies to

http://upload.wikimedia.org/math/1/d/b/1dbe1d65b864ee9a63ef9ded7df9f044.pngmodel" />
BS模型的理解:
bs模型,一个让人又爱又恨的model,开始入门的时候,觉得这个模型简直就是天才的杰作,虽然说看着公式复杂,其实计算还是很简单的,那么一折腾就能得到想要的结果,最重要的是这个结果还不算太坏。于是很是兴奋的拿着公式满世界挥舞,却发现这也不行,那也不行,一时间完全失去了对这些个模型的信心。
后来慢慢看见的模型多了,开始慢慢理解bs了。 我曾经和bobo说过,虽然我们用着bs,其实bs的含义是很简单的,就是一个有价值的部分的实现加权加上一个没有价值部分的不实现加权。这样理解的话,那些歌N(D1)和N(d2)就变成了纯粹的概率问题,我们在用正态的时候这个值可能容易算出来,可是要是把这个过程看成其他的分布就难了。假设这个过程是一个power-law的过程,假设这个power-law的a和效用函数是有关系的,这个a和市场也是有关系的,怎么样得到一个简单的表达和一个完整的推导?假设这个过程是一个levy process,比如说是VG,是CGMY,怎么样求那个default的概率,这又是一大堆问题了,有空我真想把power-law的那个想法做一下,不过现在看起来要等这个考试结束了。
anyway,看习题,写习题,这一章没有难点,难点我也基本搞定了。过。

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有