加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

2019~2020学年北京市十二中初一七年级(上册)期中数学试卷《附带标准》

(2020-02-26 15:54:48)
标签:

教育


2019~2020学年北京市十二中初一七年级(上册)期中数学试卷《附带标准》

初一数学知识点归纳

  1.数轴

  (1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.

  数轴的三要素:原点,单位长度,正方向.

  (2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)

  (3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大.

  2.相反数

  (1)相反数的概念:只有符号不同的两个数叫做互为相反数.

  (2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.

  (3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正.

  (4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号.

  3.绝对值

  (1)概念:数轴上某个数与原点的距离叫做这个数的绝对值.

  互为相反数的两个数绝对值相等;

  绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.

  有理数的绝对值都是非负数.

  (2)如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:

  当a是正有理数时,a的绝对值是它本身a;

  当a是负有理数时,a的绝对值是它的相反数﹣a;

  当a是零时,a的绝对值是零.

  即|a|={a(a>0)0(a=0)﹣a(a<0)

  4.有理数大小比较

  (1)有理数的大小比较

  比较有理数的大小可以利用数轴,他们从左到右的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.

  (2)有理数大小比较的法则:

  正数都大于0;

  负数都小于0;

  正数大于一切负数;

  两个负数,绝对值大的其值反而小.

  【规律方法】有理数大小比较的三种方法

  1.法则比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.

  2.数轴比较:在数轴上右边的点表示的数大于左边的点表示的数.

  3.作差比较:

  若a﹣b>0,则a>b;

  若a﹣b<0,则a

  若a﹣b=0,则a=b.

  5.有理数的减法

  (1)有理数减法法则:减去一个数,等于加上这个数的相反数. 即:a﹣b=a+(﹣b)

  (2)方法指引:

  在进行减法运算时,首先弄清减数的符号;

  将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号); 二是减数的性质符号(减数变相反数);

  

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有