加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

[转载]关于谱半径(spectrum radius)

(2016-04-21 11:27:16)
标签:

转载

矩阵谱半径指的是矩阵的最大特征值(含绝对值)。

它可以判断收敛性,也可以判断方程解的稳定性。

一般情况下,当存在一个单位矩阵减去另外一个矩阵的形式时, 谱半径小于一就是为了确保它们之间的差值为正这样逆矩阵才会存在,可以用来验证一个方案是否可行。

The radius http://www.encyclopediaofmath.org/legacyimages/s/s086/s086460/s0864601.pngradius)" TITLE="[转载]关于谱半径(spectrum radius)" /> of the smallest closed disc in the plane that contains the spectrum of this element (cf. Spectrum of an element). The spectral radius of an element http://www.encyclopediaofmath.org/legacyimages/s/s086/s086460/s0864602.pngradius)" TITLE="[转载]关于谱半径(spectrum radius)" /> is connected with the norms of its powers by the formula

http://www.encyclopediaofmath.org/legacyimages/s/s086/s086460/s0864603.pngradius)" TITLE="[转载]关于谱半径(spectrum radius)" />

which, in particular, implies that http://www.encyclopediaofmath.org/legacyimages/s/s086/s086460/s0864604.pngradius)" TITLE="[转载]关于谱半径(spectrum radius)" /> . The spectral radius of a bounded linear operator on a Banach space is the spectral radius of it regarded as an element of the Banach algebra of all operators. In a Hilbert space, the spectral radius of an operator is equal to the greatest lower bound of the norms of the operators similar to it (see [2]):

http://www.encyclopediaofmath.org/legacyimages/s/s086/s086460/s0864605.pngradius)" TITLE="[转载]关于谱半径(spectrum radius)" />

If the operator is normal, then http://www.encyclopediaofmath.org/legacyimages/s/s086/s086460/s0864606.pngradius)" TITLE="[转载]关于谱半径(spectrum radius)" /> (cf. Normal operator).

 

 

定义:

Let λ1, ..., λn be the (real or complex) eigenvalues of a matrix ACn × n. Then its spectral radius ρ(A) is defined as:

http://upload.wikimedia.org/math/6/3/5/635fc210503739f75bbb635420a1bbc7.pngradius)" />

The following lemma shows a simple yet useful upper bound for the spectral radius of a matrix:

性质1.

Lemma: Let ACn × n be a complex-valued matrix, ρ(A) its spectral radius and ||·|| a consistent matrix norm; then, for each kN:

http://upload.wikimedia.org/math/6/c/f/6cf305d37eb20dcb56cfbd8dff114399.pngradius)" />

Proof: Let (v, λ) be an eigenvector-eigenvalue pair for a matrix A. By the sub-multiplicative property of the matrix norm, we get:

http://upload.wikimedia.org/math/5/d/2/5d2b1188eb1f6d1fa278fdc24104b98a.pngradius)" />

and since v ≠ 0 for each λ we have

http://upload.wikimedia.org/math/e/f/a/efaa4a9fb6db2f98c42ba8cbd07bbe5a.pngradius)" />

and therefore

http://upload.wikimedia.org/math/1/8/b/18bc693dccdec1bc25aceddf3476477f.pngradius)" />

The spectral radius is closely related to the behaviour of the convergence of the power sequence of a matrix; namely, the following theorem holds:

2.

Theorem: Let ACn × n be a complex-valued matrix and ρ(A) its spectral radius; then

http://upload.wikimedia.org/math/0/8/7/087e116fb13e33f0d58ac71a4709fbec.pngradius)" /> if and only if http://upload.wikimedia.org/math/6/5/c/65cf24a1d1c0734a31e3e9a06a432b20.pngradius)" />

Moreover, if ρ(A)>1, http://upload.wikimedia.org/math/0/e/a/0ea30ff326e0be7a6fa192554816c9d8.pngradius)" /> is not bounded for increasing k values.

 

http://upload.wikimedia.org/math/7/8/c/78c858d1ebc94a39f8dbbc4a195eac88.pngradius)" />

From the Jordan normal form theorem, we know that for any complex valued matrix http://upload.wikimedia.org/math/6/c/0/6c037cf1b387410eeea5e23ab1d343b8.pngradius)" /> , a non-singular matrix http://upload.wikimedia.org/math/b/9/f/b9f3df3261fe1e06183c8121eab4b618.pngradius)" /> and a block-diagonal matrix http://upload.wikimedia.org/math/3/d/c/3dcb390dab82aa86156150573bf16359.pngradius)" /> exist such that:

http://upload.wikimedia.org/math/9/0/6/906853d6fe89ec52020f41030dea7316.pngradius)" />

with

http://upload.wikimedia.org/math/a/1/7/a17df65a161da0b564373415b1ae5d74.pngradius)" />

where

http://upload.wikimedia.org/math/7/a/c/7ac5c6cc6f4ba8af025944e151e2e1a9.pngradius)" />

It is easy to see that

http://upload.wikimedia.org/math/d/e/c/dec09d480f4ed0da0e1d5720771a2750.pngradius)" />

and, since http://upload.wikimedia.org/math/f/f/4/ff44570aca8241914870afbc310cdb85.pngradius)" /> is block-diagonal,

http://upload.wikimedia.org/math/f/7/b/f7b9f07f38d09ffdb1e570c07375d012.pngradius)" />

Now, a standard result on the http://upload.wikimedia.org/math/8/c/e/8ce4b16b22b58894aa86c421e8759df3.pngradius)" /> -power of an http://upload.wikimedia.org/math/7/6/f/76f34faf83fa815264359931797464cd.pngradius)" /> Jordan block states that, for http://upload.wikimedia.org/math/3/3/b/33b00e23899cffc5eadb6604e4f68966.pngradius)" /> :

http://upload.wikimedia.org/math/6/7/0/670e35519fe595a7605275b1159a5f87.pngradius)" />

Thus, if http://upload.wikimedia.org/math/e/6/9/e69b1cf9e4cbc580efab32cf3a1f66ae.pngradius)" /> then http://upload.wikimedia.org/math/a/5/a/a5a9c3f5bb4e0cd556297f5a52971caf.pngradius)" /> , so that

http://upload.wikimedia.org/math/0/d/2/0d250862de40e59903edcf756e42e6bc.pngradius)" />

which implies

http://upload.wikimedia.org/math/6/f/c/6fcf575e676e29129bc651e71c2e3918.pngradius)" />

Therefore,

http://upload.wikimedia.org/math/9/6/2/962ce217c28a45b40f9c9c857cc599bd.pngradius)" />

On the other side, if http://upload.wikimedia.org/math/1/1/1/11182de58e91572fb3653508da8a4b13.pngradius)" /> , there is at least one element in http://upload.wikimedia.org/math/f/f/4/ff44570aca8241914870afbc310cdb85.pngradius)" /> which doesn't remain bounded as k increases, so proving the second part of the statement

3

For any matrix norm ||·||, we have

http://upload.wikimedia.org/math/3/3/e/33e85cd72419a6ad1d9b63265f175c87.pngradius)" />

In other words, Gelfand's formula shows how the spectral radius of A gives the asymptotic growth rate of the norm of Ak:

http://upload.wikimedia.org/math/a/6/a/a6a57c63a00ba26503a766d5ca780c27.pngradius)" /> for http://upload.wikimedia.org/math/a/3/3/a33ea8713e7473c41f00dd28b984896b.pngradius)" />

 

谱半径与范数的关系:

1.定义:A是n阶方阵,λi是其特征值,i=1,2,…,n。则称特征值的绝对值的最大值为A的谱半径,记为ρ(A)。 注意要将谱半径与谱范数(2-范数)区别开来,谱范数是指A的最大奇异值,即A^H*A最大特征值的算术平方根。谱半径是矩阵的函数,但不是矩阵范数。
2、谱半径和范数的关系是以下几个结论:
定理1:谱半径不大于矩阵范数,即ρ(A)≤║A║。
因为任一特征对λ,x,Ax=λx,可得Ax=λx。两边取范数并利用相容性即得结果。
定理2:对于任何方阵A以及任意正数e,存在一种矩阵范数使得║A║<ρ(A)+e。
定理3(Gelfand定理):ρ(A)=lim_{k->∞} ║A^k║^{1/k}。
利用上述性质可以推出以下两个常用的推论:
推论1:矩阵序列 I,A,A^2,…A^k,… 收敛于零的充要条件是ρ(A)<1。
推论2:级数 I+A+A^2+... 收敛到(I-A)^{-1}的充要条件是ρ(A)<1。

0

  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有