三、转碟工艺的机械模型
污泥干化是一种工艺,不能以纯粹的机械设备看待。要理解一种干化工艺的优缺点,需要首先了解其机械特征可能造成的物流问题。而要了解物流,需建立一个机械模型。
Stord干燥设备有不同的系列,早期用于污泥干化的主要有TST-10、TST-30、TST-40、TST-60、TST-70、TST80和TST-100等机型。近年来改用了新的系列型号,如TST-1736、TST-1750、TST-1950、TST-1936、TST-2250、TST-2264等。新系列数字的前两位意为转碟直径,17意味着1700mm,后两位数字为碟片数量。
笔者根据两份完整的技术方案建立了转碟机机械模型。其中TST-1736为采用0.5MPa饱和蒸汽的半干化项目(从含固率20%至32%),TST-2264为采用200度导热油的全干化项目(从含固率20%至90%)。通过这两个不同模型的比较,可以发现很多重要的工艺问题。
方案给出了处理量、蒸发量、入口含固率、出口含固率、湿泥堆密度、干泥堆密度、碟片数量、碟片直径、碟片中心距、干燥器外形尺寸等,模型就根据上述信息,在原外形尺寸图基础上,画出干燥器内部机械结构图,利用一点平面几何和三角的知识,建立各参照点的方程,分解推算。通过最终换热面积的校核,可以确认模型的准确性。以下是两个模型分别获得的基础数据:
1、
TST-1736机型
【转子情况】该方案只有转子加热,有效换热面积143平方米,定子不设换热面,但查该公司样本,如果定子设换热面的话,可增加18平方米。此面积正好是圆形定子的一半。主轴直径应为600mm左右,碟片直径1700mm,钢材厚度12mm,单个碟片双侧的有效换热面积为4.0平方米,碟片数量36个,中心间距140mm。碟片为中心高、边缘低的飞碟形,表面弧度约3.35°,主轴上有大约7.5平方米的非换热面。转子总容积为3.7立方米。
【槽型容积】干燥器内部长度约5.56米,包括蒸汽罩在内的总截面积4.2平方米,如果以碟片上缘为界限,槽型截面积为3.3平方米,容积18.1立方米,减去转子净容积,物料恰好漫过全部换热面时的有效容积为14.4立方米。研究干泥物流,主要与此值相关。
【蒸汽罩容积】本方案中,蒸汽罩为圆形(干燥器侧视图为灯泡型),直径与定子相同,只是其圆心较定子提高了大约480mm。
以物流漫过碟片上缘为界,蒸汽罩的净容积为5.4立方米。此值关系到干化的安全性。
2、
TST-2264机型
【转子情况】该方案转子加热面积为391平方米,定子42平方米,总有效换热面积433平方米。定子加热面积相当于槽型约200°的投影。主轴直径应为1200mm左右,碟片直径2200mm,钢材厚度14mm,单个碟片双侧的有效换热面积为6.1平方米,碟片数量64个,中心距140mm。碟片为中心高、边缘低的碟形,碟片弧度约3°,主轴上有大约23.9平方米的非换热面。转子净容积为15.4立方米。
【槽型容积】干燥器内部长度约9.4米,包括蒸汽罩在内的总截面积7.4平方米,如果以碟片上缘为界限,槽型截面积为4.1平方米,槽型容积38.6立方米,减去转子净容积,物料漫过换热面时的净容积为23.2立方米。
【蒸汽罩容积】本方案中,蒸汽罩为梯形,高度约1350mm,上底宽1400mm,下底宽2500mm。以物流漫过碟片上缘为界,蒸汽罩的净容积为31.1立方米。
四、转碟干化工艺的物流和特点
在机械模型所获得的参数基础上,建立了转碟干化工艺的热平衡模型。建立此模型的目的是检验不同工况下各个关键点的物流变化,特别是给热工质的情况。
1、干泥返混
据Stord的技术方案可知,转碟机在进行低干度半干化(含固率小于45%)时,无需干泥返混;而在全干化(含固率大于90%)时则需要干泥返混,入干燥器的平均含固率为65%-75%。如果要生产含固率低于85%的高干度半干化污泥(如60-80%),需要用全干化污泥与湿泥进行后混获得。但根据国内厂商的宣传资料,三菱技术不需干泥返混,可一次获得高干度半干化产品。这里的“矛盾”说法其实可从物流情况来判断。
首先假设湿泥堆密度为1050
kg/m3,含固率90%的干泥堆密度为600 kg/m3,含固率32%时为1000 kg/m3。
在TST1736项目中,将125吨/日、含固率20%的湿泥预干燥至含固率32%以适合流化床焚烧,此时设计蒸发量1953 kg/h;使干燥器内污泥物流达到刚刚浸没碟片的高度时,所对应的处理时间为220分钟,即污泥在干燥器内停留时间约3小时40分钟。此时,如果污泥出口直径为300mm的话,污泥离开干燥器的流速仅为0.013米/秒。
在TST2264项目中,将147.7吨/日、含固率20%的湿泥干燥至含固率90%,需要干泥返混至65%,设计蒸发量4786 kg/h;使干燥器内污泥物流达到刚刚浸没碟片的高度时,所对应的处理时间为63分钟,即污泥在干燥器内停留时间仅1小时3分钟。此时,如果污泥出口直径为500mm的话,干泥离开干燥器的流速为0.029米/秒。
维持TST1736机型的蒸发量不变,使出口含固率提高或降低,对处理时间和干泥出口流速所产生的影响均不大。
但如果维持TST2264项目蒸发量不变,干泥含固率调整为70%(堆密度设为650 kg/m3),返混含固率仍为65%,处理量为160.8吨/日、含固率20%的湿泥,使干燥器内污泥物流达到刚刚浸没碟片的高度时,所对应的处理时间为14.3分钟。此时,如果污泥出口直径仍为500mm的话,污泥离开干燥器的流速为0.135米/秒。如此短的停留时间,需要使污泥在干燥器内形成非常高的平均水平流速,这对轴向推进力非常弱的转碟机来说是几乎不可能的,且干泥出口流速之高,单靠重力出料恐怕也难以实现(必然搭桥)。
将返混含固率降为55%,所对应的处理时间可提高为49分钟,干泥出口流速可降为0.038米/秒。此平均含固率下污泥可能仍有粘性,国际上干泥返混后的含固率普遍设在65%以上,应该是有实践依据的。返混后的含固率越高,干泥返混的流量越大。
由此看来,Stord方案中的干泥返混并非“画蛇添足”之举。国内采用三菱技术可以不用干泥返混且直接做高干度半干化,其技术可靠性如何,只能看实践检验了。
1996年Stord申请了一项专利,对转碟机中应用干泥返混以避免粘性区为主要内容,其中所谈到的粘性区在含固率45~70%之间。在低干度半干化(低于45%)时,当污泥尚未形成所说的胶粘相即已离开了干燥器,此时干化是可行的。含固率超过70%,干化也可行,但由于物流量(也即干泥返混)方面的问题,所建议的干泥含固率都会大于85%。
在处理时间上,出口含固率越高,处理时间越短,反之则越长,全干化时处理时间最短,Stord给出的时间是60分钟,可从模型得到确认。
2、定子夹套
对于转碟机来说,要提高蒸发量,在传热系数、换热面积和对数平均温差三要素中,可行的手段主要是扩大换热面积,而从模型数据来看,转子换热面占了总换热面积的将近90%,定子夹套换热成了一个可有可无的“选项”。
理解这个问题也很有意义,以TST2264为例,夹套最大面积为50.8平方米,考虑下部的各种开口,实际能获得的换热面仅有42平方米。这些开口及其密封都影响到换热面清洁、磨蚀、漏风等实际运行问题。其中主要问题在于换热面的更新,由于转碟外缘与夹套内壁之间有大约150-220mm的间隙,此间隙采用焊接在碟片外缘的推料板来更新,推料板的作用,会使污泥在夹套内壁上形成剪切力,如果污泥含沙量高,可能造成夹套磨蚀。
就机械构型而言,转碟机因为是单轴,其转子的换热面积比例会远高于双轴乃至四轴的空心桨叶干燥器。
3、转子负荷
提高换热面积,意味着增加碟片数量。碟片数量多,则金属用量大,在高热环境下的金属变形量及其机械负荷也会明显增加。
根据方案,TST2264的干燥器自重为100吨,根据样本则为59-76吨。模型计算显示,额定料位下干固体量应为11759公斤,污泥总量为16吨左右。该干燥器需采用一台200 kW的电机驱动。
转碟干燥机配有计量称重控制装置,秤量污泥范围为0~50t,称重传感器精度0.03%,系统秤重精度0.1%。设称重装置的目的在于控制湿泥流量,这一方式并不能解决因污泥粘性造成的转子过载。因此在称重之外,还需在传动装置上配备过载安全销,以保护马达和干燥器主轴,避免应力损坏。
4、换热工质的选择
工质的选择除了是项目本身的要求外,也存在干燥器制造方面的考虑。
对TST1736采用0.5MPa蒸汽模型进行考察,设计传热系数为140 W/m2.K;而TST2264采用导热油,传热系数仅为76 W/m2.K,相差近一倍;
从通入工质流体角度分析,TST1736需要采用一根DN150的蒸汽管和一根DN50的冷凝水管,即可实现最佳的流体输入输出(蒸汽流速18米/秒,冷凝水0.5米/秒);而如果采用导热油,则需要DN140的两根管才能实现进出(流速2.0米/秒)。如果考虑这些高温工质管线在穿过旋转接头时应具备最起码的隔热和支撑的话,显然采用蒸汽工质要比导热油优越得多。
从制造角度看,由于饱和蒸汽的温度低(0.9MPa时仅175度),低于导热油的200度,因此可能导致的干燥器热形变也会小。不采用更高品质的蒸汽(有资料说最高1.2 MPa),也应该是权衡温差与换热面厚度等多项因素的一种选择。以这种机械的自重看,主轴挠度、应力分布等应该是最核心的设计难题,采用蒸汽则可省去很多麻烦。据悉三菱技术目前尚不提供导热油方案,恐怕与其尚未在这方面积累足够的经验相关。
5、蒸发强度
TST1736项目所进行的低干度干化,由于污泥全程水分高,传导换热的效率也高,处理时间长,因此相对蒸发强度非常大,达13.7 kg/m2.h。
TST2264项目所进行的全干化,因有干泥返混,全程换热面更新较好,其设计蒸发强度也较高,为11.0 kg/m2.h。
根据Hamburg项目公开资料,该项目采用了TST-70型干燥器6台,将已消化脱水污泥从含固率22%干燥至含固率42%,单台设计蒸发量2437 kg/h,考虑该机型的换热面积为228平方米,则设计蒸发强度为10.7 kg/m2.h。
根据德国Dresden
Kaditz项目的公开资料(业主网站),该项目两台TST90干燥器将24%的已消化脱水污泥从含固率24%干燥至90%以上,单台换热面积330平方米,碟片数量64个,;采用10 bar饱和蒸汽,干泥出口温度105度,蒸发强度的设计值为12 kg/m2.h。实际由于干泥粉尘含量高,实际运行干化至含固率81%,每日干燥后产品量68 t/d,干泥出口温度101-102度,产品中粉尘比例92%,干泥冷却后温度50度,实际蒸发强度10.2 kg/m2.h。
参考制造商所提供的其它一些干化项目的公开资料,转碟污泥干化的蒸发强度可做如下统计:低干度半干化时,设计蒸发强度约10~14公斤/平方米.小时,全干化时约10~12公斤/平方米.小时(有干泥返混时)。
6、含氧量
在一些商业宣传中,转碟机制造商/代理商声称“在废蒸汽排放口处(这里是干燥机内部氧气浓度最高的地方),装有氧浓度探头,在线监测气体中氧气浓度变化。正常工作中机内氧浓度保持在0.5%以下,远离爆炸极限浓度(13%),因此对惰化环境并没有苛酷的要求,仅当氧浓度上升到10%才启动惰性气体保护装置。这样,除了在开/停机时外,极少需要启用惰性气体保护”。
根据方案,转碟干化所需要的将蒸汽带出的最低环境空气量,应在升水蒸发量0.1-0.3 kg之间。据此,可知其废气抽取口处的最大氧含量应为0.9-2.3%,高于所说的0.5。根据Dresden项目的操作屏幕显示,确实看到了废气出口处的氧含量为0.2-0.3%,但亦可注意到当时氮气阀门AA15是打开的。
上述说法中错误在于,在废蒸气出口处的含氧量恰恰是最低而非“最高”,干燥器其余部分特别是两端靠近开口的位置,是接近环境空气的含氧量。从这个角度看,转碟机的安全性之所以存在较大问题,含氧量正是基本原因之一。(后详)
7、干化污泥温度及留存量
根据方案,“转碟机的干泥下载口在定子底部,全干化时污泥温度仅105度”。
产品出口温度高,是由于产品堆积密度高、处理时间长造成的,碟片外表面温度与热流体温度差较小,产品无论是全干化还是半干化,出口温度都会很高,即接近或超过100度。全干化时,产品在此温度下的粉尘化倾向会比较严重。
方案指出:“当干燥机第一次启动、机内全空不含干污泥时,先要分批加入湿污泥干化,这段期间干燥机不向外输出干泥,直到整个干燥机下部有一层分布均匀的干泥,满足干燥工艺要求时,干燥机即可正常运行。
“正常停机时,当机内剩余污泥量达到设定值的时候,停止出料。一般干燥机停机时间不长时(几天),不需清空机内污泥,因为下一次启动需要这些污泥。
“正常运行与一般养护情况下都不需要清料,仅当每年2次或每4000运行小时1次的大检护时,需要清出部分物料;仅当干燥机要更换转子时,才需要清出全部物料。干燥器内底部仍剩余一点污泥,就可在侧面打开所有检修大口。当需要更换转子时,需用工业吸尘器(可临时租用)取出底部剩余污泥,清空后,可将转子从干燥机一端抽出”。
根据转碟干燥器的构型可知,这种机械如果要清空是十分困难的,凭机械本身,可将其中2/3清出,其余作为类似流化床的“床料”留在干燥器内。但无论如何,这部分干泥在开停机期间长期面临过热和粉尘化的风险,尤其是采用导热油作为工质时。
非正常情况下的停机粉尘化问题会较为严重。如果是导热油系统,导热油如果也因停电而不能撤出热量,其安全状况会非常糟糕。配备双路供电可能是唯一选择。
8、出泥干度调节
污泥是废弃物,其来泥性状可能有较大变化,特别是在集中处置型的项目中。
根据方案的描述,转碟机可以“通过测出泥口温度,间接测量干化出泥的干度”。但由于转碟机的处理时间长,这种间接测量的意义似乎不大,换句话说,转碟机通过控制给热、湿泥进料量来保证出泥干度无法实现。因湿泥进料波动造成的干泥含固率大幅波动可能是难以避免的。
干燥器称重只是机械安全方面的一种措施,对控制出泥干度没有什么作用。从干燥器因重量变化进行干预的机理看,湿泥含固率向下偏移,如果给热不变,则蒸发量不变,但这相当于入口水量增加,机内平均含固率降低,无论何种进料形式(容量式还是重量式),都会造成干燥器总重增加,但只有超过一定区间,喂料设备才会进行反应。由于转碟设备本身很重,污泥量很大,假设自重加污泥为100吨(对TST2264来说,污泥重量可能在10吨左右),不考虑动负荷的增加,称重系统的精度为0.1%,则机内增量至少要在100公斤以上时,称重才会有察觉。这100公斤物料的不均匀干燥已不是很小的量了。
反之,如果湿泥含固率正偏移,则会造成出泥干度过高,继而产生粉尘的问题。
9、干泥堆密度
根据污水处理工艺的不同,污泥中有机质含量的高低,会造成干泥密度的较大不同。有些污泥干化到含固率90%的堆密度为0.6,有些则可能0.4,笔者所见到的资料中,甚至有0.18的报道。
转碟机处理这种堆密度较低的污泥时可能存在物流上的难题。对TST2264机型进行推算,设换热面刚好被淹没的位置为基准污泥容积,干泥出口直径500mm,堆密度为0.6时,处理时间为63分钟,出口流速为0.029米/秒;堆密度为0.4时,处理时间降44分钟,出口流速为0.044米/秒;堆密度降为0.2时,处理时间仅有24分钟,出口流速为0.088米/秒。
当污泥堆密度发生瞬间变化,某一时刻堆密度大幅度降低时,前端喂料尚未采取措施,将会造成污泥料位上升,挤占蒸汽罩空间,这可能造成剩余空间内的粉尘密度大幅度增加,成为可能引发粉尘爆炸的隐患。
10、给热波动
根据方案描述,“采用导热油作为工质时,进油温度变化范围为200±5°C,过大的进油温度偏差会导致干燥机报警与停机。
“给热系统所提供的热能不可能完全没有变化,我们要求导热油给热系统在给热发生波动时,提高或降低导热油的流量,而不要过分改变其温度,超出干燥系统的承受范围。
“当给热量不足时,应降低导热油流量,而不要降低温度,同时干燥系统的处理量也相应下调。当供热量超过干化使用时,多出的导热油走分配系统的旁路,不进入干燥机”。
从这段描述看,转碟机似对导热油温度特别是超温十分敏感。供热温度的变化,直接影响对数平均温差,如果流量不变,实际进入干燥器的给热量将会增加。转碟机为了保证其运行稳定性,可能需要通过调节流量的方式避免超温。从导热油温度看,200度是很低的应用温度,超温应该对提高蒸发量有正面的意义,但从这里避免超温的逻辑看,应该是出于安全考虑。
换个角度来看,200度油温应该是这种机械可接受的温度上限。由此反证,这里给出的蒸发强度11公斤/平方米·时也已经是上限。
对导热油温度的敏感,可能妨碍转碟机在一些难以精确控制加热条件的项目上的应用。比如,焚烧炉如果采用导热油时。
11、磨蚀与干燥机寿命
根据例外一份TST2264方案的描述,“采用双相不锈钢的转子寿命预期可达100,000小时,采用316L的定子寿命可超过20年(注:该项目处理一种干基含沙量在15%的市政污泥,全干化)。
“干燥机的转子与定子每工作4000小时需接受超声波控伤检查,局部被腐蚀或磨蚀达到一定程度的,可以通过补焊来修复”。
这段描述有两点值得注意,其一是转子磨损大于定子,主要磨损发生在转子上;另一个就是磨损探伤频率,对于污泥处理来说,采用了这么高品质的钢材,还要有如此之高的维护,令人意外。
干泥返混的作用其实就是换热面的清洁。焊接在定子上的挡料板(厚度15mm)插入在碟片间隙中(140 mm),它与碟片表面无接触,因此挡料板本身无自清洁的功能,对碟片表面的清理完全是依靠物料之间形成的剪切力,当干化必须跨越胶粘相时,这种剪切只有当存在干物料(磨料性质)时才有效。具有粘性的湿泥团块表面粘附着干泥颗粒,会对换热面形成冲刷、挤压、摩擦,热表面上形成的连续冲刷,就会造成金属磨蚀。
污泥干化项目中磨蚀与腐蚀常常相伴而来。由于物料长期不能清空,当污泥中腐蚀性成分较高时,若选材为碳钢,则形成腐蚀的几率较高;但如果污泥的含沙量也高,选择不锈钢也难以应付机械磨蚀。这种选材上的内在矛盾,对用钢量较大的转碟机来说,是一项困难的抉择。制造商的一般做法是要求客户自行承担选材的责任。
转碟机的换热面大是一个重要优点,但制造难度高,焊缝延长米数量惊人,对磨蚀、腐蚀造成的损坏进行补焊较为困难。除清理必须彻底外(不清理干净就进行焊接可能引发粉尘爆炸),补焊的寿命可能是一个问题(有国外报道BERGAMO项目316L干燥器的补焊频度为两周一次)。
转碟机抗磨蚀的手段十分有限。采取增大碟片间距(disc
pitch)的方式,可加快物流速度,减少摩擦,但这种方式将使得设备长度增加,主轴的机械受力情况也随之改变。主轴直径加大,也会相应要求碟片直径的加大,因此采用这种方式的可能性不大。
Stord的新机型均采用了灯泡形夹套(bulb jacket),这样主轴和碟片上方有较大堆料空间,以减少转子与磨料之间的硬摩擦。对碟片的外缘采用实心不锈钢材料进行包覆(cladding),以保护碟片外沿的焊缝,并使转子外缘与定子之间形成材料硬度方面的差别,以磨损实心不锈钢包覆层为代价;对换热碟片本身则没有其它可行的保护手段。
转碟机可能比较怕异物混入,一旦出现如螺栓、石块、金属管等硬物的混入,或者发生焊接件或紧固件脱落等,有可能造成碟片和阻料板的损坏,主轴上碟片密度高,机械损伤变形后修复困难。转子本身重量达数十吨,维修时需重型起重设备,现场修复也可能需要较长的停机时间。
12、废热回收
根据方案描述,在TST2264项目上,“循环冷却水得到废热后,温度达到40摄氏度,可用于干燥车间的冬季采暖”。而按照技术描述,转碟机只需使用很少的空气量,就可以将蒸发水分带出来,并使得干燥器内的含氧量极低。这种废气的品质应可以很方便地采用间接冷凝方式,获得80度以上的高温热水,但这份项目方案没有这样做,究其原因,可能是这种全干化项目废气中的粉尘量高的缘故。
在TST1736项目上,由于干化产品的最终含固率地,无粉尘产生,则回收高品质的废热不难。
13、能耗水平
在TST2264方案中,采用导热油的全干化,净热耗应在680~690 kcal/kg蒸发量之间。在TST1736方案中,热平衡核算下来的升水蒸发量净热耗为760
kcal/kg,蒸汽耗1.51kg/kg,但保证值为1.62,可能是考虑了蒸汽干化的额外损耗(冷凝水方面的损失)。
转碟干化工艺由于单元简单,设备数量少,因此电耗相对较低。与其它传导型干化工艺比,也属于较低的水平。
【未完待续】
加载中,请稍候......