数学综合实践课《平面图形的镶嵌》教案
(2015-10-13 15:19:05)
标签:
数学综合实践课教案 |
一、教学课题《平面图形的镶嵌》
二、教案背景
《平面图形的镶嵌》是在苏科版八上教材中以数学活动的形式呈现的。课标中已将综合实践活动作为数学学习的一个重要组成部分。“综合与实践”是一类以问题为载体,学生主动参与的学习活动.学生在教师的指导下,将所学过的知识有机地结合,增强对知识的理解;注意与实际问题有机地结合,进一步获得数学活动的经验,增强应用意识。
三、教材分析
(一)学习目标分析:
本课是在信息环境、资源环境中让学生通过实例认识图形的镶嵌,理解构成镶嵌的条件,在发现只用正三角形、正四边形、正六边形可以镶嵌的基础上,上升到任意三角形、四边形可以镶嵌平面,再将图形的镶嵌知识由平面拓展到空间。通过学生思考,相互讨论,动手操作,丰富学生对镶嵌的认识,提高动手能力,发展空间观念,增强审美意识。
(二)资源环境分析:
现代信息技术及各种有效的资源既能调动学生思维的主观能动性,培养其创新精神,又能使学生活跃思路,多角度、全方位的思考问题。为此,我构建了图形镶嵌的图片资源、拼图动画资源、现场实物操作资源等环境。在思考、操作、欣赏与提高各板块的活动中,充分利用现代信息技术让学生欣赏图形的镶嵌、感受到图形镶嵌的魅力;在合作学习、快乐体验中达到学习目标。
(三)学生学习心理分析:
我所面对的教学对象是八年级学生,他们思维活跃、求知欲强,对事情有自己的看法,他们的学习在很大的程度上受着兴趣、情感的支配。
2
四、教学方法
本课力求突出数学综合实践的特点,以问题为主线,以“图案欣赏——探究镶嵌——拓展应用”的模式展开教学,学生在动手操作、独立思考、小组合作的过程中积累数学经验,解决实际问题。
五、教学过程
(一)情境创设:课件展示拼图的图片。
3
生:先研究等边三角形。
【这一问题的提出,想带领学生先从同一种全等的图形开始研究镶嵌,但全等的图形,涉及的范围较大,于是采用从一般到特殊的方法,降低问题的难度。】
4
师:全等的任意三角形可以镶嵌吗?
生:可以的。任意1个三角形的3个内角都可以构成1个平角。用6个这样全等的三角形可以进行镶嵌。我是这样镶嵌的:
师:能镶嵌的图形在一个拼接点处有什么特点呢?
5
生:相等的边互相重合。
师:这两位同学的回答结合在一起,就非常全面了。
师:用全等的五边形能镶嵌平面吗?请说明理由
生:因为在图形的每一个拼接点处,无法用五边形中的某些角构成周角。
师:一木工厂的废料堆里,堆放着大量废木料,都是形状、大小相同的不规则的四边形。如果把它们做成比较规则的四边形,须锯掉一些边角,就要浪费很多木料,有人建议用这些木料来铺地板,你说行吗?为什么?
生:可以,因为全等的任意四边形能够镶嵌。
【将所学的数学知识应用于生活实际,使学生体验到数学价值所在。】
(三)拓展延伸:
师:若等边三角形与正方形的边长都相等用等边三角形与正方形的组合能镶嵌平面吗?为什么?
小组讨论研究。
生:在一个顶点处用3个等边三角形和2个正方形可以镶嵌。
师:当等边三角形与正方形组合镶嵌平面时,设一个顶点周围有m个等边三角形的内角,n个正方形的内角,那么,这些角的和就应该满足方程:360
(四)作品欣赏:
师:著名的版画家埃舍尔的作品《骑士》,是由深、浅骑士镶嵌而成。杨振宁的书《基本粒子发现简史》就是以《骑士》作为封面的
师:在这幅图中,你看到了人脸还是花瓶?
生:花瓶!人脸!!花瓶和人脸!
师:这幅图片是由人脸和花瓶镶嵌而成!
师:这节课我们主要探讨的是平面上的镶嵌,现实生活中,还存在许多空间镶嵌的例子:例如,蜂巢由正六边形镶嵌而成,足球由正五边形和正六边形镶嵌而成,乌龟壳上的图案由一些不规则图形镶嵌而成
六、教学反思
个人认为,数学综合实践课不同于其他的数学课,教学时,应结合学生的实际经验和已有知识,在信息环境、资源环境中设计富有情趣和意义的活动,使他们有更多的机会,从周围熟悉的事物中学习和理解数学,感受数学与现实生活的密切联系,提高学生运用数学知识解决实际问题的能力,从而提高学生的综合素质。